Volume 50 Issue 5
May  2022
Turn off MathJax
Article Contents
WU Hao-dong, SHAO Feng-hua, LÜ Peng, BAI Yong-hui, SONG Xu-dong, WANG Jiao-fei, GUO Qing-hua, WANG Xue-bin, YU Guang-suo. Study on the relationship between structure, properties and size distribution of fine slag from entrained flow gasification[J]. Journal of Fuel Chemistry and Technology, 2022, 50(5): 513-522. doi: 10.19906/j.cnki.JFCT.2021089
Citation: WU Hao-dong, SHAO Feng-hua, LÜ Peng, BAI Yong-hui, SONG Xu-dong, WANG Jiao-fei, GUO Qing-hua, WANG Xue-bin, YU Guang-suo. Study on the relationship between structure, properties and size distribution of fine slag from entrained flow gasification[J]. Journal of Fuel Chemistry and Technology, 2022, 50(5): 513-522. doi: 10.19906/j.cnki.JFCT.2021089

Study on the relationship between structure, properties and size distribution of fine slag from entrained flow gasification

doi: 10.19906/j.cnki.JFCT.2021089
Funds:  The project was supported by the Project of the Key Research Plan of Ningxia (2021BEE03011)
  • Received Date: 2021-09-28
  • Accepted Date: 2021-11-03
  • Rev Recd Date: 2021-11-02
  • Available Online: 2021-11-20
  • Publish Date: 2022-05-24
  • In the process of gasification for different size of coal particles, there are remarkable differences in the cracking mode, behavior of volatile removal and coke-slag interaction. These differences lead to the discrepancies in structural characteristics and reaction behavior for fine slag. Therefore, it is considered that the study on relationship between structure, properties and size distribution of fine slag from entrained flow gasification can provide vital guidance for analyzing the formation mechanism of fine slag and optimizing the size of coal particles for gasification. For this purpose, the fine slag from Ningdong typical GSP technology in Ningxia Province was selected as a raw material. After drying, crushing and sieving, three kinds of samples with size of <0.125, 0.125–0.250 and >0.250 mm were prepared, and called small, medium and large size samples respectively. The nitrogen adsorption, XRD, Raman spectroscopy and TGA were applied to clarify the physicochemical structure and combustion reactivity of samples. It is found that there are huge differences in the composition, structure or reactivity of the samples in different size. Precisely, three types of samples account for 22%, 46%, and 32% respectively. All the fine slag contains a large number of spherical particles and irregular particles. The sample with the middle size particles, which has the most content of residual carbon (19%) and the lowest graphitization degree (30%), shows the slightest gasification degree. It also presents the largest specific surface area (87.8 m2/g), and the optimal combustibility index regardless of the heating rate. While, the above properties of the sample with large size particles are completely opposite. Apparently, coal gasified sufficiently tends to form fine slag in large particle size, while coal gasified insufficiently is more likely to form slag in middle particle size. To some degree, all these findings can supply a certain basis to the study of gasification process. Meanwhile, the medium-sized fine slag with the most content in fine slag has low gasification degree, large content of carbon, and large specific surface area and porosity, which still has a certain potential utilization value for the treatment and disposal of the fine slag.
  • loading
  • [1]
    朱子祺. 煤制油选煤厂煤显微组分迁移规律[J]. 洁净煤技术,2020,26(6):89−95.

    ZHU Zi-qi. Migration rule of coal macerals in coal-to-oil preparation plant[J]. Clean Coal Technol,2020,26(6):89−95.
    [2]
    ZHANG Y X, WU J J, WANG Y, MIAO Z Y, SI C D, SHANG X L, ZHANG N. Effect of hydrothermal dewatering on the physico-chemical structure and surface properties of Shengli lignite[J]. Fuel,2016,164:128−133.
    [3]
    王学斌, 于伟, 张韬, 白永辉, 刘莉君, 史兆臣, 殷瑞, 谭厚章. 基于粒度分级的煤气化细渣特性分析及利用研究[J]. 洁净煤技术,2021,27(3):61−69.

    WANG Xue-bin, YU Wei, ZHANG Tao, BAI Yong-hui, LIU Li-jun, SHI Zhao-chen, YIN Rui, TAN Hou-zhang. Characteristic analysis and utilization of coal gasification fine slag based on particle size classification[J]. Clean Coal Technol,2021,27(3):61−69.
    [4]
    ZHAO D Y, LUN W J, WEI J J. Discussion on wastewater treatment process of coal chemical industry[J]. Iop Conference,2017,100:012067.
    [5]
    KATO K, MATSUEDA K. Leading edge of coal utilization technologies for gasification and cokemaking[J]. Kona Powder Part J,2017,2018:112−121.
    [6]
    WU S Y, HUANG S, JI L Y, WU Y Q, GAO J S. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel,2014,122:67−75. doi: 10.1016/j.fuel.2014.01.011
    [7]
    刘冬雪, 胡俊阳, 冯启明, 黄阳, 徐中慧. 煤气化炉渣浮选及其精炭制备活性炭的研究[J]. 煤炭转化,2018,(5):73−80. doi: 10.3969/j.issn.1004-4248.2018.05.012

    LIU Dong-xue, HU Jun-yang, FENG Qi-ming, HUANG Yang, XU Zhong-hui. Study on flotation of coal gasification slag and preparation of activated carbon from carbon concentrate[J]. Coal Convers,2018,(5):73−80. doi: 10.3969/j.issn.1004-4248.2018.05.012
    [8]
    陈清如. 21世纪的洁净煤炭能源[C]//发展洁净煤技术, 提高煤炭企业竞争力学术研讨会论文集. 北京: 中国煤炭学会, 2001: 5.

    CHEN Qing-ru, Clean coal energy in the 21st century[C]//Proceedings of the Symposium on developing clean coal technology and improving the competitiveness of coal enterprises. Beijing: CCS, 2001: 5.
    [9]
    GUO F H, MIAO Z K, GUO Z K, LI J, ZHANG Y X, WU J J. Properties of flotation residual carbon from gasification fine slag[J]. Fuel,2020,267:117043. doi: 10.1016/j.fuel.2020.117043
    [10]
    汪伦, 李寒旭, 赵帅, 夏宝亮, 黄俊. 不同粒径气化细渣的残碳形态及燃烧特性[J/OL]. 煤炭转化: 1-10 1-08-05]. http://kns.cnki.net/kcms/detail/14.1163.TQ.20210517.1448.004.html.

    WANG Lun, LI Han-xu, ZHAO Shuai, XIA Bao-liang, HUANG Jun. Residual carbon forms and combustion characteristics of gasification fine slag with different particle sizes[J/OL]. Coal Conversion: 1-10[2021-08-05]. http://kns.cnki.net/kcms/detail/14.1163.TQ.20210517.1448.004.html.
    [11]
    史兆臣, 戴高峰, 王学斌, 董永胜, 李攀, 于伟, 谭厚章. 煤气化细渣的资源化综合利用技术研究进展[J]. 华电技术,2020,42(7):63−73. doi: 10.3969/j.issn.1674-1951.2020.07.009

    SHI Zhao-chen, DAI Gao-feng, WANG Xue-bin, DONG Yong-sheng, LI Pan, YU Wei, TAN Hou-zhang. Review on the comprehensive resources utilization technology of coal gasification fine slag[J]. Huadian Technol,2020,42(7):63−73. doi: 10.3969/j.issn.1674-1951.2020.07.009
    [12]
    张婷, 于露, 李宇, 高艳鹏, 孙丽娅, 刘乐, 易汉平, 张弦. 水煤浆气化炉渣的特性分析及应用探讨[J]. 当代化工研究,2020,(19):88−90. doi: 10.3969/j.issn.1672-8114.2020.19.039

    ZHANG Ting, YU Lu, LI Yu, GAO Yan-peng, LIU Le, YI Han-ping, ZHANG Xian. Characteristic analysis andapplication discussion of coal water slurry gasifier slag[J]. Mod Chem Res,2020,(19):88−90. doi: 10.3969/j.issn.1672-8114.2020.19.039
    [13]
    YANG L, ZHU Z, LI D L, YAN X K, ZHANG H J. Effects of particle size on the flotation behavior of coal fly ash[J]. Waste Manage,2019,85:490−497.
    [14]
    吕登攀, 白永辉, 王焦飞, 宋旭东, 苏暐光, 于广锁, 祝贺, 唐广军. 气流床气化细渣中残炭的结构特征及燃烧特性研究[J]. 燃料化学学报,2021,49(2):129−136. doi: 10.1016/S1872-5813(21)60011-7

    LU Deng-pan, BAI Yong-hui, WANG Jiao-fei, SONG Xu-dong, SU Wei-guang, YU Guang-suo, ZHU he, TANG Guang-jun. Structural features and combustion reactivity of residual carbon in fine slag from entrained-flow gasification[J]. J Fuel Chem Technol,2021,49(2):129−136. doi: 10.1016/S1872-5813(21)60011-7
    [15]
    TANG Y. Preparation of Sialon powder from coal gasification slag[J]. J Wuhan Univ Technol-Mat Sci Edit,2010,25(6):1044−1046.
    [16]
    LI S H, WHITTY K J. Physical phenomena of char-slag transition in pulverized coal gasification[J]. Fuel Process Technol,2012,95:127−136. doi: 10.1016/j.fuproc.2011.12.006
    [17]
    XU S Q, ZHOU Z J, GAO X X, YU G S, GONG X. The gasification reactivity of unburned carbon present in gasification slag from entrained-flow gasifier[J]. Fuel Process Technol,2009,90(9):1062−1070. doi: 10.1016/j.fuproc.2009.04.006
    [18]
    CANGIALOSI F, CANIO F D, INTINI G. Experimental and theoretical investigation on unburned coal char burnout in a pilot-scale rotary kiln[J]. Fuel,2006,85(16):2294−2300. doi: 10.1016/j.fuel.2006.01.031
    [19]
    SENNECA O, RUSSO P, SALATINO P, MASI S. The relevance of thermal annealing to the evolution of coal char gasification reactivity[J]. Carbon,1997,35(1):141−151. doi: 10.1016/S0008-6223(96)00134-0
    [20]
    WAGNER N J, MATJIE R H, SLAGHUIS J H, VAN HEERDEN J H P. Characterization of unburned carbon present in coarse gasification ash[J]. Fuel,2008,87(6):683−691. doi: 10.1016/j.fuel.2007.05.022
    [21]
    YANG Y B, CHU M, SHI X, LYU F Y, SUN X B, JIA C X. Grading characteristics of texaco gasification fine slag: Quality distinction and selective distribution of trace elements[J]. ACS Omega,2020,41(5):26883−26893. doi: 10.1021/acsomega.0c04126
    [22]
    PAN C C, LIANG Q F, GUO X L, DAI Z H, LIU H F, GONG X. Characteristics of different sized slag particles from entrained-flow coal gasification[J]. Energy Fuels,2016,30(2):1487−1495. doi: 10.1021/acs.energyfuels.5b01326
    [23]
    LIN Q, GUET J M. Characterization of coals and macerais by X-ray diffraction[J]. Fuel,1990,69(7):821−825. doi: 10.1016/0016-2361(90)90224-E
    [24]
    JAWHANi T, ROID A, CASADO J. Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon,1995,33(11):1561−1565. doi: 10.1016/0008-6223(95)00117-V
    [25]
    DIPPEL B, JANDER H, HEINTZENBERG J. NIR FT Raman spectroscopic study of Name soot[J]. Phys Chem Chem Phys,1999,1:4707−4712. doi: 10.1039/a904529e
    [26]
    SFOMA M C, ZUILEN M V, PHILIPPOT P. Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia[J]. Geochim Cosmochim Acta,2014,124(1):18−33.
    [27]
    WU J Z, WANG B F, CHENG F Q. Thermal and kinetic characteristics of combustion of coal sludge[J]. J Therm Anal Calorim,2017,129(3):1899−1909. doi: 10.1007/s10973-017-6341-1
    [28]
    WANG X B, LI S S, ADEOSUN A, LI Y, VUJANOVIC, M;TAN H Z;DUIC, N. Effect of potassium-doping and oxygen concentration on soot oxidation in O2/CO2 atmosphere: A kinetics study by thermogravimetric analysis[J]. Energy Conv Manag,2017,149:686−697. doi: 10.1016/j.enconman.2017.01.003
    [29]
    葛庆仁. 气固反应动力学[M]. 北京: 原子能出版社, 1991: 46−50.

    GE Qing-ren. Gas Solid Reaction Kinetics[M]. Beijing: Atomic Energy Press, 1991: 46−50.
    [30]
    梁爱云, 惠世恩, 徐通模, 赵钦新, 周屈兰, 谭厚章, 孙鹏. 几种生物质的TG-DTG分析及其燃烧动力学特性研究[J]. 可再生能源,2008,26(4):56−61. doi: 10.3969/j.issn.1671-5292.2008.04.014

    LIANG Ai-yun, HUI Shi-en, XU Tong-mo, ZHAO Qin-xin, ZHOU Qu-lan, TAN Hou-zhang, SUN Peng. TG-DTG analysis and combustion kinetics characteristic study on several kinds of biomass[J]. Renewable Energy Resour,2008,26(4):56−61. doi: 10.3969/j.issn.1671-5292.2008.04.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (578) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return