Volume 50 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
LU Wen-li, WANG Jun-gang, SUN De-kui, MA Zhong-yi, CHEN Cong-biao, HOU Bo, LI De-bao. Research progress of microstructure for cobalt-based F-T catalysts[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 436-445. doi: 10.19906/j.cnki.JFCT.2021091
Citation: LU Wen-li, WANG Jun-gang, SUN De-kui, MA Zhong-yi, CHEN Cong-biao, HOU Bo, LI De-bao. Research progress of microstructure for cobalt-based F-T catalysts[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 436-445. doi: 10.19906/j.cnki.JFCT.2021091

Research progress of microstructure for cobalt-based F-T catalysts

doi: 10.19906/j.cnki.JFCT.2021091
Funds:  The project was supported by the National Natural Science Foundation of China (21872162, 21902170) and the Key Research Project of Shanxi Province (201903D121039) .
  • Received Date: 2021-08-18
  • Accepted Date: 2021-10-19
  • Rev Recd Date: 2021-10-15
  • Available Online: 2022-01-10
  • Publish Date: 2022-04-26
  • Fischer-Tropsch synthesis (FTS) is a promising route to produce various olefins and fine chemicals from non-petroleum carbon sources that can be used to produce synthesis gas, such as coal, natural gas and biomass. Cobalt-based catalysts have gained more attention in FTS for the academic research and industrial applications, owing to their excellent catalytic properties such as low water-gas-shift activity, great Fischer-Tropsch reaction activity and high chain growth probability. The structure of the microscopic active site and the surface adsorption of the cobalt-based catalyst during the Fischer-Tropsch progress have an effect on the product distribution and catalytic performance. In this review, we summarized some advancements in the development of cobalt-based F-T catalysts focusing on the effects of particle size, crystal phase, crystal plane and microscopic active site, with emphasis on the research from the types, surface adsorption behavior and characterization techniques of microscopic active site. Some suggestions for the development of cobalt-based F-T catalysts in the future are also given.

  • loading
  • [1]
    DEN BREEJEN J P, RADSTAKE P B, BEZEMER G L, BITTER J H, HOLMEN A, DE JONG K P. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. J Am Chem Soc,2009,131(20):7197−7203. doi: 10.1021/ja901006x
    [2]
    SAVOST’YANOV A P, YAKOVENKO R E, NAROCHNYI G B, BAKUN V G, SULIMA S I, YAKUBA E S, MIYCHENKO S A. Industrial catalyst for the selective Fischer-Tropsch synthesis of long-chain hydrocarbons[J]. Kinet Catal,2017,58(1):81−91. doi: 10.1134/S0023158417010062
    [3]
    LIU J X, SU H Y, SUN D P, ZHANG B Y, LI W X. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC[J]. J Am Chem Soc,2013,135(44):16284−16287. doi: 10.1021/ja408521w
    [4]
    IGLESIA E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Appl Cata A: Gen,1997,161(1):59−78.
    [5]
    BEZEMER G L, BITTER J H, KUIPERS H, OOSTERBEEK H, HOLEWIJN J E, XU X D, KAPTEIJN F, VANDILLEN A J, DEJONG K P. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. J Am Chem Soc,2006,128(12):3956−3964. doi: 10.1021/ja058282w
    [6]
    XIONG H, MOTCHELAHO M A M, MOYO M, JEWELL L L, COVILLE N J. Correlating the preparation and performance of cobalt catalysts supported on carbon nanotubes and carbon spheres in the Fischer-Tropsch synthesis[J]. J Catal,2011,278(1):26−40. doi: 10.1016/j.jcat.2010.11.010
    [7]
    邱成武, 吴宝山, 孟劭聪, 李永旺. 费托合成Co/SiO2催化剂的粒子尺寸效应: TPD和DRIFTS的研究[J]. 化学学报,2015,73(7):690−698. doi: 10.6023/A15020133

    (QIU Cheng-wu, WU Bao-shan, MENG Shao-cong, LI Yong-wang. Effects of Co/SiO2 particle size on Fischer-Tropsch synthesis: Study by TPD and DRIFTS[J]. Acta Chim Sin,2015,73(7):690−698. doi: 10.6023/A15020133
    [8]
    QI Z, CHEN L, ZHANG S, SU J, SOMORJAI G A. A mini review of cobalt-based nanocatalyst in Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2020,602:117701. doi: 10.1016/j.apcata.2020.117701
    [9]
    RALSTON W T, MELAET G, SAEPHAN T, SOMORJAI G A. Evidence of structure sensitivity in the Fischer-Tropsch reaction on model cobalt nanoparticles by Time-Resolved Chemical Transient Kinetics[J]. Angew Chem Int Ed,2017,56(26):7415−7419. doi: 10.1002/anie.201701186
    [10]
    TUXEN A, CARENCO S, CHINTAPALLI M, ESCUDERO C, CHUANG C H, ESCUDERO C, PACH E, JIANG P, BORONIDCS F, BEBERWYCK B, ALIVISATOS A P, GUO J H, PEREZ R, BESENBACHER F, SALMERON M. Size-dependent dissociation of carbon monoxide on cobalt nanoparticles[J]. J Am Chem Soc,2013,135(6):2273−2278. doi: 10.1021/ja3105889
    [11]
    MITCHELL R W, LLOYD D C, VAN DE WATER L G A, ELLIS P R, METCALFE K A, SIBBALD C, DAVIES L H, ENACHE D I, KELLY G J, BOYES E D, GAI P L. Effect of pretreatment method on the nanostructure and performance of supported Co catalysts in Fischer-Tropsch synthesis[J]. ACS Catal,2018,8(9):8816−8829. doi: 10.1021/acscatal.8b02320
    [12]
    MARGOLIN H. Constitution of binary alloys[J]. J Am Chem Soc,1959,81(10):2600−2600.
    [13]
    KITAKAMI O, SATO H, SHIMADA Y, SATO F, TANAKA M. Size effect on the crystal phase of cobalt fine particles[J]. Phys Rev B,1997,56(21):13849−13854. doi: 10.1103/PhysRevB.56.13849
    [14]
    TSAKOUMIS N E, PATANOU E, LOGDBERG S, JOHNSEN R E, MYRATAD R, VAN BEEK W, RYTTER E, BLEKKAN E A. Structure-performance relationships on Co-based Fischer-Tropsch synthesis catalysts: The more defect-free, the better[J]. ACS Catal,2019,9(1):511−520. doi: 10.1021/acscatal.8b03549
    [15]
    GARCES L J, HINCAPIE B, ZERGER R, SUIB S L. The effect of temperature and support on the reduction of cobalt oxide: An in situ X-ray diffraction study[J]. J Phys Chem C,2015,119(10):5484−5490. doi: 10.1021/jp5124184
    [16]
    VAN SANTEN R A, MARKVOORT A J, FILOT I A W, GHOURI M M, HENSEN E J M. Mechanism and microkinetics of the Fischer-Tropsch reaction[J]. Phys Chem Chem Phys,2013,15(40):17038. doi: 10.1039/c3cp52506f
    [17]
    LYU S, WANG L, ZHANG J H, LIU C, SUN J M, PENG B, WANG Y, RAPPE KENNETH G, ZHANG Y H, LI J L, NIE L. Role of active phase in Fischer-Tropsch synthesis: Experimental evidence of CO activation over single-phase cobalt catalysts[J]. ACS Catal,2018,8(9):7787−7798. doi: 10.1021/acscatal.8b00834
    [18]
    ZIJLSTRA B, BROOS R J P, CHEN W, OOSTERBEEK H, FILOT I A W, HENSEN E J M. Coverage effects in CO dissociation on metallic cobalt nanoparticles[J]. ACS Catal,2019,9(8):7365−7372. doi: 10.1021/acscatal.9b01967
    [19]
    PETERSEN M A, VAN DEN BERG J A, VAN HELDEN P. Revisiting CO activation on Co catalysts: Impact of step and kink sites from DFT[J]. ACS Catal,2017,7(3):1984−1992. doi: 10.1021/acscatal.6b02843
    [20]
    ZHENG J, CAI J, JIANG F, XU Y, LIU X. Investigation of the highly tunable selectivity to linear alpha-olefins in Fischer-Tropsch synthesis over silica-supported Co and CoMn catalysts by carburization-reduction pretreatment[J]. Catal Sci Technol,2017,7(20):4736−4755. doi: 10.1039/C7CY01764B
    [21]
    ZHAO Y H, SUN K J, MA X F, LIU J X, SUN D P, SU H Y, LI W X. Carbon chain growth by formyl insertion on rhodium and cobalt catalysts in syngas conversion[J]. Angew Chem Int Ed,2011,50(23):5335−5338. doi: 10.1002/anie.201100735
    [22]
    SU H Y, ZHAO Y H, LIU J X, SUN K J, LI W X. First-principles study of structure sensitivity of chain growth and selectivity in Fischer-Tropsch synthesis using HCP cobalt catalysts[J]. Catal Sci Technol,2017,7(14):2967−2977. doi: 10.1039/C7CY00706J
    [23]
    ZHANG R G, KANG L, LIU H X, HE L L, WANG B J. Insight into the C-C chain growth in Fischer-Tropsch synthesis on HCP Co(10-10) surface: The effect of crystal facets on the preferred mechanism[J]. Comp Mater Sci,2018,145:263−279. doi: 10.1016/j.commatsci.2018.01.013
    [24]
    QIN C, HOU B, WANG J G, WANG Q, WANG G, YU M T, CHEN C B, JIA L T, LI D B. Crystal-plane-dependent Fischer-Tropsch performance of cobalt catalysts[J]. ACS Catal,2018,8(10):9447−9455. doi: 10.1021/acscatal.8b01333
    [25]
    VAN SANTEN R A. Complementary structure sensitive and insensitive catalytic relationships[J]. Accounts Chem Res,2009,42(1):57−66. doi: 10.1021/ar800022m
    [26]
    AGRAWAL R, PHATAK P, SPANU L. Effect of phase and size on surface sites in cobalt nanoparticles[J]. Catal Today,2018,312:174−180. doi: 10.1016/j.cattod.2018.03.064
    [27]
    BOELLER B, DURNER K M, WINTTERLIN J. The active sites of a working Fischer-Tropsch catalyst revealed by operando scanning tunnelling microscopy[J]. Nat Catal,2019,2(11):1027−1034. doi: 10.1038/s41929-019-0360-1
    [28]
    PESTAMAN R, CHEN W, HENSEN E. Insight into the rate-determining step and active sites in the Fischer-Tropsch reaction over cobalt catalysts[J]. ACS Catal,2019,9(5):4189−4195. doi: 10.1021/acscatal.9b00185
    [29]
    STUKOWSKI A. Structure identification methods for atomistic simulations of crystalline materials[J]. Model Simul Mater Sc, 2012, 20(4).
    [30]
    BANERJEE A, VAN BAVEL A P, KUIPERS H P C E, SAEYS M. Origin of the formation of nanoislands on cobalt catalysts during Fischer-Tropsch synthesis[J]. ACS Catal,2015,5(8):4756−4760. doi: 10.1021/acscatal.5b01169
    [31]
    WANG B J, LIANG D L, GUAN Z, LI D B, ZHANG D B, ZHANG R G. Understanding the key step of Co2C-catalyzed Fischer-Tropsch synthesis[J]. J Phys Chem C,2020,124(10):5749−5758. doi: 10.1021/acs.jpcc.0c00611
    [32]
    LIU B, LI W, XU Y, LIN Q, JIANG F, LIU X. Insight into the intrinsic active site for selective production of light olefins in cobalt-catalyzed Fischer-Tropsch synthesis[J]. ACS Catal,2019,9(8):7073−7089. doi: 10.1021/acscatal.9b00352
    [33]
    VAN HELDEN P, CIOBICA I M, COETZER I M, COETZER R L J. The size-dependent site composition of FCC cobalt nanocrystals[J]. Catal Today,2016,261:48−59. doi: 10.1016/j.cattod.2015.07.052
    [34]
    RANKIN R B. Similarities and differences for atomic and diatomic molecule adsorption on the B-5 type sites of the HCP(1016) surfaces of Co, Os, and Ru from DFT calculations[J]. Heliyon,2019,5(6):e01924−e01924. doi: 10.1016/j.heliyon.2019.e01924
    [35]
    PRIETO G, MARTINEZ A, CONCEPCION P, MORENO-TOST R. Cobalt particle size effects in Fischer-Tropsch synthesis: Structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts[J]. J Catal,2009,266(1):129−144. doi: 10.1016/j.jcat.2009.06.001
    [36]
    GNANAMANI M L, RIBEIRO M C, MA W, SHAFER W D, JACOBS G, GRAHAM U M, DAVIS B H. Fischer-Tropsch synthesis: Metal-support interfacial contact governs oxygenates selectivity over CeO2 supported Pt-Co catalysts[J]. Appl Catal A: Gen,2011,393(1/2):17−23. doi: 10.1016/j.apcata.2010.11.019
    [37]
    PEI Y P, LIU J X, ZHAO Y H, DING Y J, LIU T, DONG W D, ZHU H J, SU H Y, YAN Li, LI Jin-lin, LI Wei-xue. High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide Interface[J]. ACS Catal,2015,5(6):3620−3624. doi: 10.1021/acscatal.5b00791
    [38]
    杨霞珍, 刘化章, 唐浩东, 蔡丽萍, 吴再国. Fe、Co基费托合成催化剂助剂研究进展[J]. 化工进展,2006,25(8):867−870.

    YANG Xia-zhen, LIU Hua-zhang, TANG Hao-dong, CAI Li-ping, WU Zai-guo. Research progress of promoters for Fe, Co-based Fischer-Tropch synthesis catalysts[J]. Chem Ind Eng Prog, 2006,2006,25(8):867−870.
    [39]
    HADDAD G L, CHEN B, GOODWIN J J G. Effect of La3+ Promotion of Co/SiO2 on CO hydrogenation[J]. J Catal,1996,161(1):274−281. doi: 10.1006/jcat.1996.0185
    [40]
    JOHNSON G R, WERNER S, BELL A T. An investigation into the effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer-Tropsch synthesis: Evidence for enhanced CO adsorption and dissociation[J]. ACS Catal,2015,5(10):5888−5903. doi: 10.1021/acscatal.5b01578
    [41]
    JOHNSON G R, BELL A T. Role of ZrO2 in promoting the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts[J]. ACS Catal,2015,6(1):100−114.
    [42]
    PIAO Y, JIANG Q, LI H, MATSUMOTO H, LIANG J S, LIU W, CUONG P H, LIU Y F, WANG F. Identify Zr promotion effects in atomic scale for Co-based catalysts in Fischer-Tropsch synthesis[J]. ACS Catal,2020,10(14):7894−7906. doi: 10.1021/acscatal.0c01874
    [43]
    LEWIS E A, LE D, JEWELL A D, MURPHY C J, RAHMAN T S, SYKES E C H. Segregation of Fischer-Tropsch reactants on cobalt nanoparticle surfaces[J]. Chem Commun,2014,50(49):6537−6539. doi: 10.1039/C4CC01680G
    [44]
    LEWIS E A, LE D, JEWELL A D, MURPHY C J, RAHMAN T S, SYKES E C H. Visualization of compression and spillover in a coadsorbed system: Syngas on cobalt nanoparticles[J]. ACS Nano,2013,7(5):4384−4392. doi: 10.1021/nn400919y
    [45]
    LIN T J, GONG K, WANG C Q, AN Y L, WANG X X, QI X Z, LI S G, LU Y W, ZHONG L S, SUN Y H. Fischer-Tropsch synthesis to olefins: Catalytic performance and structure evolution of Co2C-based catalysts under a CO2 environment[J]. ACS Catal,2019,9(10):9554−9567. doi: 10.1021/acscatal.9b02513
    [46]
    GUNASOORIYA G T K K, VAN BAVEL A P, KUIPERS H P C E, SAEYS M. CO adsorption on cobalt: Prediction of stable surface phases[J]. Surf Sci,2015,642:L6−L10. doi: 10.1016/j.susc.2015.06.024
    [47]
    PAREDES-NUNEZ A, LORITO D, GUILHAUME N, MIRODATOS C, SCHUURMAN Y, MEUNIER F C. Nature and reactivity of the surface species observed over a supported cobalt catalyst under CO/H2 mixtures[J]. Catal Today,2015,242:178−183. doi: 10.1016/j.cattod.2014.04.033
    [48]
    ZHANG R G, LIU F, WNAG Q, WANG B J, LI D B. Insight into CHx formation in Fischer-Tropsch synthesis on the hexahedron Co catalyst: Effect of surface structure on the preferential mechanism and existence form[J]. Appl Catal A: Gen,2016,525:76−84. doi: 10.1016/j.apcata.2016.07.007
    [49]
    ZHANG R G, KANG L, LIU H X, WANG B J, LI D B, FAN M H. Crystal facet dependence of carbon chain growth mechanism over the HCP and FCC Co catalysts in the Fischer-Tropsch synthesis[J]. Appl Catal B: Environ,2020,269:118847. doi: 10.1016/j.apcatb.2020.118847
    [50]
    FLOTO M E, CIUFO R A, HAN S, MULLINS C B. CO dissociation on model Co/SiO2 catalysts - effect of adsorbed hydrogen[J]. Surf Sci,2021,705.
    [51]
    SINGH J A, YANG N, LIU X Y, TSAI C, STONE K H, JOHNSON B, KOH A L, BENT S F. Understanding the active sites of CO hydrogenation on Pt-Co catalysts prepared using atomic layer deposition[J]. J Phys Chem C,2018,122(4):2184−2194. doi: 10.1021/acs.jpcc.7b10541
    [52]
    WANG H, ZHOU W, LIU J X, SI R, SUN G, ZHONG M Q, SU H Y, ZHAO H B, RODRIGUEZ J A, PENNYCOOK S J, IDROBO J C, LI W X, KOU Y, MA D. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis[J]. J Am Chem Soc,2013,135(10):4149−4158. doi: 10.1021/ja400771a
    [53]
    WESTAATE C J, VAN DE LOOSDRECHT J, NIEMANTSVERDRIET J W. Spectroscopic insights into cobalt-catalyzed Fischer-Tropsch synthesis: A review of the carbon monoxide interaction with single crystalline surfaces of cobalt[J]. J Catal,2016,342:1−16. doi: 10.1016/j.jcat.2016.07.010
    [54]
    MCNAB A I, MCCUE A J, DIONISI D, ANDERSON A. Quantification and qualification by in-situ FTIR of species formed on supported-cobalt catalysts during the Fischer-Tropsch reaction[J]. J Catal,2017,353:286−294. doi: 10.1016/j.jcat.2017.07.031
    [55]
    TESCHNER D, BORSODI J, WOOTSCH A, REVAY Z, HAEVECKER M, KNOP-GERICKE A, JACKSON S D, SCHLOEGL R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation[J]. Sci,2008,320(5872):86−89. doi: 10.1126/science.1155200
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2201) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return