Volume 50 Issue 7
Aug.  2022
Turn off MathJax
Article Contents
LIANG Li-ping, GAO Xu-zhou, GAO Fei, MAO Lu-tao, ZHU Bao-shun, LI Guo-min. Preparation and composition optimization of the composite Ni/carbon-based microwave absorbents from coal hydrogasification semicoke[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 896-903. doi: 10.19906/j.cnki.JFCT.2022001
Citation: LIANG Li-ping, GAO Xu-zhou, GAO Fei, MAO Lu-tao, ZHU Bao-shun, LI Guo-min. Preparation and composition optimization of the composite Ni/carbon-based microwave absorbents from coal hydrogasification semicoke[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 896-903. doi: 10.19906/j.cnki.JFCT.2022001

Preparation and composition optimization of the composite Ni/carbon-based microwave absorbents from coal hydrogasification semicoke

doi: 10.19906/j.cnki.JFCT.2022001
Funds:  The project was supported by the National Natural Science Foundation of China (51802212) and the Natural Science Foundation of Shanxi Province (201801D221119).
  • Received Date: 2021-11-15
  • Accepted Date: 2021-12-31
  • Rev Recd Date: 2021-12-26
  • Available Online: 2022-01-10
  • Publish Date: 2022-08-01
  • With the residual carbon in coal hydrogasification semicoke as both reducing agent and dielectric component, Ni/carbon-based composite materials for microwave absorption were prepared. The synthesis process mainly involved loading of Ni species via an impregnation of nickel nitrate solution and then an in-situ carbothermic reduction. The effects of Ni load on the microstructure and properties as well as the related mechanism were studied. The experimental results showed that the electromagnetic parameters could be readily regulated by changing the Ni load, which occurred as a result of the accompanied changes in carbon content, graphitization degree, as well as the number of interfaces and defects. Hence, a good impedance matching could be easily achieved. At a carbothermal reduction temperature of 700 ℃, the composite with 20% Ni load showed the best microwave absorption performance. For a coating thickness of 2.5 mm, the minimum reflection loss was −42.6 dB and the corresponding effective bandwidth was 4.1 GHz; while the effective bandwidth could be up to 5.6 GHz under 2 mm coating thickness. The dominant microwave absorption mechanism was the dielectric loss, which mainly derived from the conduction loss due to graphite carbon and the polarization relaxation losses because of the existence of interfaces and defects.
  • loading
  • [1]
    MA J R, WANG X X, CAO W Q, HAN C, YANG H J, YUAN J, CAO M S. A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures[J]. Chem Eng J,2018,339:487−498. doi: 10.1016/j.cej.2018.01.152
    [2]
    刘顺华, 刘国民, 董星龙. 电磁屏蔽及吸波材料[M]. 北京: 化学工业出版社, 2007: 7.

    LIU Sun-hua, LIU Guo-min, DONG Xing-long. Eltromagnetic Shielding and Absorbing Materials[M]. Beijing: Chemical Industry Press, 2007: 7.
    [3]
    刘敏, 向军, 吴志鹏, 李佳乐, 沈湘黔. Fe-Co-Ni合金纳米粒子镶嵌的碳纳米纤维的简单制备及其吸波性能[J]. 无机化学学报,2017,33(1):57−65.

    LIU Min, XIANG Jun, WU Zhi-peng, LI Jia-le, SHEN Xiang-qian. Simple preparation of Fe-Co-Ni alloy nanoparticle-encrusted carbon nanofibers and their wave absorption properties[J]. Chin J Inorg Chem,2017,33(1):57−65.
    [4]
    胡正浪, 吴海华, 杨增辉, 姜建堂, 周建新. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J/OL]. 复合材料学报, 2021-10-25: 1–14.

    HU Zheng-lang, WU Hai-hua, YANG Zheng-hui, JIANG Jian-tang, ZHOU Jian-xin. Preparation and microwave absorbing properties of grapheme-iron-nickel alloy-poly(lactic acid) composites[J/OL]. Acta Mater Compos Sin, 2021-10-25: 1–14.
    [5]
    XU J L, QI X S, LUO C Z, QIAO J, XIE R, SUN Y, ZHONG W, FU Q, PAN C X. Synthesis and enhanced microwave absorption properties: a strongly hydrogenated TiO2 nanomaterial[J]. Nano Technol,2017,28(42):425701. doi: 10.1088/1361-6528/aa81ba
    [6]
    CHEN Y, ZHANG H B, YANG Y B, WANG M, CAO A Y, YU Z Z. High‐performance epoxy nanocomposites reinforced with three‐dimensional carbon nanotube sponge for electromagnetic interference shielding[J]. Adv Funct Mater,2016,26(3):447−455. doi: 10.1002/adfm.201503782
    [7]
    罗发, 周万城, 焦桓, 赵东林. 高温吸波材料研究现状[J]. 宇航材料工艺,2002,32(1):8−11. doi: 10.3969/j.issn.1007-2330.2002.01.002

    LUO Fa, ZHOU Wan-cheng, JIAO Huan, ZHAO Dong-lin. Current study of high temoerature rader absorpting materials[J]. Aerospace Mater & Tech,2002,32(1):8−11. doi: 10.3969/j.issn.1007-2330.2002.01.002
    [8]
    刘克, 王际童, 龙东辉, 凌立成. 低密度Fe3O4/中孔炭微球复合材料的可规模制备及吸波性能[J]. 无机材料学报,2017,32(10):1023−1028.

    LIU Ke, WANG Ji-tong, LONG Dong-hui, LING Li-cheng. Scalable preparation and wave absorption properties of low-density Fe3O4/mesoporous carbon microsphere composites[J]. Chin J Inorg Chem,2017,32(10):1023−1028.
    [9]
    王生浩, 文峰, 郝万军, 曹阳. 电磁污染及电磁辐射防护材料[J]. 环境科学与技术,2006,12:96−98+121. doi: 10.3969/j.issn.1003-6504.2006.09.039

    WANG Seng-hao, WEN Feng, HAO Wang-jun, CAO Yang. Electromagnetism pollution and protection materials for electromagnetic Radiation[J]. Environ Sci Technol,2006,12:96−98+121. doi: 10.3969/j.issn.1003-6504.2006.09.039
    [10]
    袁申富. 煤加氢气化制备可替代天然气的研究进展[J]. 当代化工研究,2020,(3):5−14. doi: 10.3969/j.issn.1672-8114.2020.03.002

    YUAN Shen-fu. Research and development of production of substituted natural gas by hydrogasification[J]. Mod Chem Res,2020,(3):5−14. doi: 10.3969/j.issn.1672-8114.2020.03.002
    [11]
    严帅, 夏梓洪, 陈彩霞, 曲旋, 毕继诚. 煤催化加氢气化研究进展[J]. 洁净煤技术,2021,27(1):60−72.

    YAN Shuai, XIA Zi-hong, CHEN Cai-xia, QU Xuan, BI Ji-cheng. Research progress on the technology of coal catalytic hydrogasification[J]. Clean Coal Technol,2021,27(1):60−72.
    [12]
    LUO N, LI X J, WANG X H, YAN H H, ZHANG C J, WANG H T. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method[J]. Carbon,2010,48(13):3858−3863. doi: 10.1016/j.carbon.2010.06.051
    [13]
    ŌYA ASAO, ŌTANI SUGIO. Catalytic graphitization of carbons by various metals[J]. Carbon,1979,17(2):131−137. doi: 10.1016/0008-6223(79)90020-4
    [14]
    FERRARI A C, ROBERTSON J, Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys Rev B, 2000, 61: 14095.
    [15]
    ZUO X Q, ZHAO Y P, ZHANG H, HUANG H, ZHOU C, CONG T Z, MUHAMMAD J, YANG X, ZHANG Y F, FAN Z, PAN L J. Surface modification of helical carbon nanocoil (CNC) with N-doped and Co-anchored carbon layer for efficient microwave absorption[J]. J Colloid Interf Sci,2022,608:1894−1906. doi: 10.1016/j.jcis.2021.10.065
    [16]
    LI W X, LIU Y Y, GUO F, DU Y E, CHEN Y Q. Self-assembly sandwich-like Fe, Co, or Ni nanoparticles/reduced graphene oxide composites with excellent microwave absorption performance[J]. Appl Surf Sci,2021,562:150212. doi: 10.1016/j.apsusc.2021.150212
    [17]
    袁欢, 周丹凤, 熊远禄, 王传彬, 沈强. 电磁屏蔽碳系纳米粒子/聚合物基泡沫复合材料的研究进展[J]. 材料科学与工程学报,2021,39(3):510−514.

    YUAN Huan, ZHOU Dan-feng, XIONG Yuan-lu, WANG Chuan-bin, SHEN Qiang. Research progress of electromagnetic shielding carbon nano particles/polymer based foam composites[J]. J Mater Sci Eng,2021,39(3):510−514.
    [18]
    MECHENRY M E, LAUGHLIN D E. Nano-scale materials development for future magnetic applications[J]. Acta Mater,2000,48(1):223−238. doi: 10.1016/S1359-6454(99)00296-7
    [19]
    WU L, MENDOZA-GARCIA A, LI Q, SUN S H. Organic phase syntheses of magnetic nanoparticles and their applications[J]. Chem Rev,2016,116(18):10473−10512. doi: 10.1021/acs.chemrev.5b00687
    [20]
    YANG L J, LV H L, LI M, ZHANG Y, LIU J C, YANG Z H. Multiple polarization effect of shell evolution on hierarchical hollow C@MnO2 composites and their wideband electromagnetic wave absorption properties[J]. Chem Eng J,2020,392:123666. doi: 10.1016/j.cej.2019.123666
    [21]
    RASHEED ATIF, FAWAD INAM. The dissimilarities between grapheme and frame-like structures[J]. Graphene,2016,5(2):55−72. doi: 10.4236/graphene.2016.52007
    [22]
    SUN S L, HE Q, XIAO S Y, XU Q, LI X, ZHOU L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat Mater,2012,11(5):426−431. doi: 10.1038/nmat3292
    [23]
    AYALA P, ARENAL R, LOISEAU A, RUBIO A, PICHLER T. The physical and chemical properties of heteronanotubes[J]. Rev Mod Phys,2010,82:1843−1885. doi: 10.1103/RevModPhys.82.1843
    [24]
    马志军, 莽昌烨, 翁兴媛, 赵海涛, 高静. Zn还原氧化石墨烯(RGO)和ZnO/RGO自组装复合材料的电磁响应行为[J]. 复合材料学报,2019,36(7):1776−1786.

    MA Zhi-jun, MAH Chang-ye, WENG Xing-yuan, ZHAO Hai-tao, GAO Jing. Electromagnetic response behavior of reduced graphene oxide (RGO) and ZnO/RGO self-assembled composites[J]. Acta Mater Compos Sin,2019,36(7):1776−1786.
    [25]
    郭晓琴. 磁性纳米粒子负载石墨烯的结构调控及吸波机理研究[D]. 郑州: 郑州大学, 2016.

    GUO Xiao-qin. Structure regulation and microwave absorption mechanism of grapheme loaded magnetic nanoparticles[D]. Zhengzhou: Zhengzhou University, 2016.
    [26]
    QUAN B, LIANG X H, JI G B, CHENG Y, LIU W, MA J N, ZHANG Y A, LI D R, XU G Y. Dielectric polarization in electromagnetic wave absorption: Review and perspective[J]. J Alloy Compd,2017,728:1065−1075. doi: 10.1016/j.jallcom.2017.09.082
    [27]
    JIANG X Y, WAN W H, WANG B, ZHANG L B, YIN L J, VAN B H, X J L, ZHANG L, LU H P, DENG L J. Enhanced anti-corrosion and microwave absorption performance with carbonyl iron modified by organic fluorinated chemicals[J]. Appl Surf Sci,2022,572:151320. doi: 10.1016/j.apsusc.2021.151320
    [28]
    ZHEN X, ZHANG X, SHI Y Y, CAI L, CHENG J, JIANG H J, ZHU X J, DONG Y Y, LU W. Efficient microwave absorption of MOFs derived laminated porous Ni@C nanocomposites with waterproof and infrared shielding versatility[J]. Carbon,2021,185:477−490. doi: 10.1016/j.carbon.2021.09.047
    [29]
    XIE P T, LI H Y, HE B, DANG F, LIN J, FAN R H, HOU C X, LIU L, ZHANG J X, MA Y, GUO Z H. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption[J]. J Mater Chem C,2018,6(32):8812−8822. doi: 10.1039/C8TC02127A
    [30]
    WANG Q Y, WU X F, HUANG J, CHEN S Y, ZHANG Y, DONG C J, CHEN G, WANG L H, GUAN H T. Enhanced microwave absorption of biomass carbon/nickel/polypyrrole (C/Ni/PPy) ternary composites through the synergistic effects[J]. J Alloy Compd,2022,890:161887. doi: 10.1016/j.jallcom.2021.161887
    [31]
    YAN F, GUO D, ZHANG S, LI C Y, ZHU C L, ZHANG X T, CHEN Y J. An ultra-small NiFe2O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property[J]. Nanoscale,2018,10:2697−2703. doi: 10.1039/C7NR08305J
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (429) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return