Volume 50 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
ZHENG Quan-xing, LIU Xiu-cai, WU Tian-wen, CHEN Hui, HUANG Chao-zhang, XU Han-chun, LAN Hong-qiao, MA Peng-fei, YU De-de, XIE Wei, YI Xiao-dong. Study on pyrolysis and combustion characteristics of different plant fibers[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 747-756. doi: 10.19906/j.cnki.JFCT.2022003
Citation: ZHENG Quan-xing, LIU Xiu-cai, WU Tian-wen, CHEN Hui, HUANG Chao-zhang, XU Han-chun, LAN Hong-qiao, MA Peng-fei, YU De-de, XIE Wei, YI Xiao-dong. Study on pyrolysis and combustion characteristics of different plant fibers[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 747-756. doi: 10.19906/j.cnki.JFCT.2022003

Study on pyrolysis and combustion characteristics of different plant fibers

doi: 10.19906/j.cnki.JFCT.2022003
Funds:  The project was supported by China Tobacco Fujian Industrial Co., Ltd (JSZXKJJH2020001).
  • Received Date: 2021-11-24
  • Accepted Date: 2022-01-11
  • Rev Recd Date: 2021-12-29
  • Available Online: 2022-01-22
  • Publish Date: 2022-06-25
  • In order to study the pyrolysis and combustion characteristics of different fibers, the kinetics of six kinds of plant fibers (coniferous, broadleaf, bamboo, flax, grass and cotton) in N2 and air atmosphere were studied by non-isothermal thermogravimetric (TG) method using Friedman method. The results showed that the fibers had different pyrolysis and combustion characteristic parameters, which were related to their own structural compositions. In the process of pyrolysis and combustion of fibers, the initial volatilization temperature (Ts), terminal decomposition temperature (Th), DTG peak temperature (Tmax), fixed carbon combustion peak temperature, maximum mass loss rate, pyrolysis character index (P) and combustion character index (S) increased with the increase of heating rates; In N2 atmosphere, the flax fiber Tmax and bamboo fiber Tmax were shown to be the highest and lowest among all fibers, respectively, and Ts of cotton fiber was the largest; Grass fiber had the smallest maximum pyrolysis mass loss rate (−(dm/dt)max), pyrolysis index (P), and combustion index (S); Between the conversion of 0.05−0.85, the average apparent activation energies (E) of broadleaf fiber and bamboo fiber were the smallest (173.30 kJ/mol) and highest (201.10 kJ/mol), respectively. In air atmosphere, Tmax of all fibers in the pyrolysis process was lower than that in N2. The apparent activation energy (Eα) of fiber pyrolysis in air atmosphere was shown to be lower than that in N2 when the conversion was between 5% and 65%.
  • loading
  • [1]
    周顺, 徐迎波, 王程辉, 田振峰, 徐志强, 何庆. 比较研究纤维素、果胶和淀粉的燃烧行为和机理[J]. 中国烟草学报,2011,17(5):1−9. doi: 10.3969/j.issn.1004-5708.2011.05.001

    ZHOU Shun, XU Ying-bo, WANG Cheng-hui, TIAN Zhen-feng, XU Zhi-qiang, HE Qing. A comparative study of the combustion behavior and mechanism of cellulose, pectin and starch[J]. Acta Tab Sin,2011,17(5):1−9. doi: 10.3969/j.issn.1004-5708.2011.05.001
    [2]
    吕当振, 姚洪, 王泉斌, 李志远, 彭钦春, 刘小伟, 徐明厚. 纤维素、木质素含量对生物质热解气化特性影响的实验研究[J]. 工程热物理学报,2008,29(10):1771−1774. doi: 10.3321/j.issn:0253-231X.2008.10.042

    LÜ Dang-zhen, YAO Hong, WANG Quan-bin, LI Zhi-Yuan, PENG Qin-Chun, LIU Xiao-wei, XU Ming-hou. Effect of cellulose and lignin content on pyrolysis and gasification characteristics for several types of biomass[J]. J Eng Therm,2008,29(10):1771−1774. doi: 10.3321/j.issn:0253-231X.2008.10.042
    [3]
    赵坤, 肖军, 沈来宏, 瞿婷婷. 基于三组分的生物质快速热解实验研究[J]. 太阳能学报,2011,32(5):7710−717.

    ZHAO Shen, XIAO Jun, SHEN Lai-hong, QU Ting-ting. Experimental study of biomass rapid pyrolysis based on three components[J]. Acta Energ Sol Sin,2011,32(5):7710−717.
    [4]
    VYAZOVKIN S. Modification of the integral isoconversional method to account for variation in activation energy[J]. J Comput Chem,2001,22(2):178−183. doi: 10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-#
    [5]
    MA Z, WANG J, YANG Y, ZHANG Y, ZHAO C, YU Y, WANG S. Comparison of the thermal degradation behaviors and kinetics of palm oil waste under nitrogen and air atmosphere in TGA-FTIR with a complementary use of model-free and model-fitting approaches[J]. J Anal Appl Pyrolysis,2018,134:12−24. doi: 10.1016/j.jaap.2018.04.002
    [6]
    DAMARTZIS T, VAMVUKA D, SFAKIOTAKIS S, ZABANIOTOU A. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA)[J]. Bioresour Technol,2011,102(10):6230−6238. doi: 10.1016/j.biortech.2011.02.060
    [7]
    CHEN Y, DUAN J, LUO Y-H. Investigation of agricultural residues pyrolysis behavior under inert and oxidative conditions[J]. J Anal Appl Pyrolysis,2008,83:165−174. doi: 10.1016/j.jaap.2008.07.008
    [8]
    MIRANDA M I G, SAMIOS D, OLIVEIRA PI EIRO T, VAGHETTI J C P, PIATNICKI C M S. Kinetics of oxidation and decomposition of soybean biodiesel evaluated by the TTT superposition theory and the Freeman-Carroll method[J]. J Mol Liq,2017,245:121−128. doi: 10.1016/j.molliq.2017.07.073
    [9]
    DA ROZA M B, NICOLAU A, ANGELONI L M, SIDOU P N, SAMIOS D. Thermodynamic and kinetic evaluation of the polymerization process of epoxidized biodiesel with dicarboxylic anhydride[J]. Mol Phys,2012,110(11/12):1375−1381. doi: 10.1080/00268976.2011.647717
    [10]
    HU M, CHEN Z, WANG S, GUO D, MA C, ZHOU Y, CHEN J, LAGHARI M, FAZAL S, XIAO B, ZHANG B, MA S. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method[J]. Energy Convers Manage,2016,118:1−11. doi: 10.1016/j.enconman.2016.03.058
    [11]
    SBIRRAZZUOLI N. Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way[J]. Thermochim Acta,2013,564:59−69. doi: 10.1016/j.tca.2013.04.015
    [12]
    MISHRA G, BHASKAR T. Non isothermal model free kinetics for pyrolysis of rice straw[J]. Bioresource Technol,2014,169:614−621. doi: 10.1016/j.biortech.2014.07.045
    [13]
    赵增立, 李海滨, 吴创之, 陈勇. 蔗渣的热解与燃烧动力学特性研究[J]. 燃料化学学报,2005,33(3):314−319. doi: 10.3969/j.issn.0253-2409.2005.03.012

    ZHAO Zeng-li, LI Hai-bin, WU Chuang-zhi, CHEN Yong. Study on the kinetic characteristics of bagasse pyrolysis and combustion[J]. J Fuel Chem Technol,2005,33(3):314−319. doi: 10.3969/j.issn.0253-2409.2005.03.012
    [14]
    DUAN L, CHEN J, JIANG Y, LI X, LONGHURST P, LEI M. Experimental and kinetic study of thermal decomposition behaviour of phytoremediation derived Pteris vittata[J]. J Therm Anal Calorim,2016,128(2):1207−1216.
    [15]
    COLLAZZO G C, BROETTO C C, PERONDI D, JUNGES J, DETTMER A, DORNELLES FILHO A A, FOLETTO E L, GODINHO M. A detailed non-isothermal kinetic study of elephant grass pyrolysis from different models[J]. Appl Therm Eng,2017,110:1200−1211. doi: 10.1016/j.applthermaleng.2016.09.012
    [16]
    GUO G, LIU C, WANG Y, XIE S, ZHANG K, CHEN L, ZHU W, DING M. Comparative investigation on thermal degradation of flue-cured tobacco with different particle sizes by a macro-thermogravimetric analyzer and their apparent kinetics based on distributed activation energy model[J]. J Therm Anal Calorim,2019,138(5):3375−3388. doi: 10.1007/s10973-019-08215-7
    [17]
    GUO G, ZHANG K, LIU C, XIE S, LI X, LI B, SHU J, NIU Y, ZHU H, DING M, ZHU W. Comparative investigation on thermal decomposition of powdered and pelletized biomasses: Thermal conversion characteristics and apparent kinetics[J]. Bioresour Technol,2020,301:1−9.
    [18]
    CHEN D, ZHENG Y, ZHU X. In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: Kinetic analysis for the drying and devolatilization stages[J]. Bioresource Technol,2013,131:40−46. doi: 10.1016/j.biortech.2012.12.136
    [19]
    CAI J, WU W, LIU R, HUBER G W. A distributed activation energy model for the pyrolysis of lignocellulosic biomass[J]. Green Chem,2013,15:1331−1340. doi: 10.1039/c3gc36958g
    [20]
    SLUITER A, HAMES B, RUIZ R, SCARLATA C, SLUITER J, TEMPLETON D, CROCKER D, Determination of structural carbohydrates and lignin in biomass[Z]. Golden: National Renewable Energy Laboratory, 2008.
    [21]
    LIANG M, YANG T, ZHANG G, ZHANG K, WANG L, LI R, HE Y, WANG J, ZHANG J. Effects of hydrochloric acid washing on the structure and pyrolysis characteristics of tobacco stalk[J]. Biomass Convers Bior,2021,1−14.
    [22]
    MA B-G, LI X-G, XU L, WANG K, WANG X-G. Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis[J]. Thermochim Acta,2006,445(1):19−22. doi: 10.1016/j.tca.2006.03.021
    [23]
    秦国鑫, 李斌, 鲁端峰, 谢国勇, 银董红, 王兵. 烟草生物质燃烧特性与机理研究[J]. 烟草科技,2015,48(1):76−81.

    QIN Guo-xin, LI Bin, LU Duan-feng, XIE Guo-yong, YIN Dong-hong, WANG Bing. Combustion property and mechanism of tobacco biomass[J]. Tob Sci Technol,2015,48(1):76−81.
    [24]
    谭洪, 王树荣, 骆仲泱, 岑可法. 生物质三组分热裂解行为的对比研究[J]. 燃料化学学报,2006,34(1):61−65. doi: 10.3969/j.issn.0253-2409.2006.01.013

    TAN Hong, WANG Shu-rong, LUO Zhong-yang, CEN Ke-fa. Pyrolysis behavior of cellulose, xylan and lignin[J]. JFuel Chem Technol,2006,34(1):61−65. doi: 10.3969/j.issn.0253-2409.2006.01.013
    [25]
    胡睿, 万诗琪, 毛峰, 王杰. 农业废弃物水洗前后热解特性的变化[J]. 燃料化学学报,2021,49(9):1239−1249.

    HU Rui, WAN Shi-qi, MAO Feng, WANG Jie. Changes in pyrolysis characteristics of agricultural residues before and after water washing[J]. J Fuel ChemTechnol,2021,49(9):1239−1249.
    [26]
    郑泉兴, 张建平, 李巧灵, 刘秀彩, 黄朝章, 蓝洪桥, 许寒春, 于德德, 刘雯, 叶仲力, 刘江生, 伊晓东, 李斌, 谢卫, 邓楠. 离子色谱-积分脉冲安培法在纸浆纤维单糖组成分析中的应用[J]. 中国造纸,2020,39(7):37−43. doi: 10.11980/j.issn.0254-508X.2020.07.006

    ZHENG Quan-xing, ZHANG Jian-ping, LI Qiao-ling, LIU Xiu-cai, HUANG Chao-zhang, LAN Hong-qiao, XU Han-chun, YU De-de, LIU Wen, YE Zhong-li, LIU Jiang-sheng, YI Xiao-dong, LI Bin, XIE Wei, DENG Nan. Application of ion chromatography-integrated pulsed amperometric method in the analysis of monosaccharide composition of pulp fiber[J]. China Pulp Paper,2020,39(7):37−43. doi: 10.11980/j.issn.0254-508X.2020.07.006
    [27]
    龚德鸿, 许成, 顾红艳. 烟梗的热解特性分析[J]. 贵州大学学报(自然科学版),2011,28(4):33−36.

    GONG De-hong, XU Cheng, GU Hong-yan. Analysis on pyrolysis characteristics of tobacco stem[J]. J Guizhou Univ (Nat Sci),2011,28(4):33−36.
    [28]
    于娟, 章明川, 沈轶, 范卫东, 周月桂. 生物质热解特性的热重分析[J]. 上海交通大学学报,2002,36(10):1475−1478. doi: 10.3321/j.issn:1006-2467.2002.10.022

    YU Juan, ZHANG Ming-chuan, SHEN Yi, FAN Wei-dong, ZHOU Yue-gui. Thermogravimetric analysis of pyrolysis characteristics of biomass[J]. J Shanghai Jiaotong Univ,2002,36(10):1475−1478. doi: 10.3321/j.issn:1006-2467.2002.10.022
    [29]
    DIBLASI C. Modeling chemical and physical processes of wood and biomass pyrolysis[J]. Prog Energ Combust,2008,34(1):47−90. doi: 10.1016/j.pecs.2006.12.001
    [30]
    VYAZOVKIN S, CHRISSAFIS K, LORENZO M L D, KOGA N, PIJOLAT M, RODUIT B, SBIRRAZZUOLI N, SU OL J J. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations[J]. Thermochim Acta,2014,590:1−23. doi: 10.1016/j.tca.2014.05.036
    [31]
    XIONG S, ZHANG S, WU Q, GUO X, DONG A, CHEN C. Investigation on cotton stalk and bamboo sawdust carbonization for barbecue charcoal preparation[J]. Bioresour Technol,2014,152:86−92. doi: 10.1016/j.biortech.2013.11.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (807) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return