Volume 50 Issue 7
Aug.  2022
Turn off MathJax
Article Contents
XIANG Ning, HAN Xiao-jin, ZHENG Jian-feng, LI Qiao-yan, ZHAO Qing-song, HOU Ya-qin, HUANG Zhang-gen. Effect of manganese modification on the low-temperature formaldehyde oxidation performance of ZIF-67 derived Co3O4[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 859-867. doi: 10.19906/j.cnki.JFCT.2022005
Citation: XIANG Ning, HAN Xiao-jin, ZHENG Jian-feng, LI Qiao-yan, ZHAO Qing-song, HOU Ya-qin, HUANG Zhang-gen. Effect of manganese modification on the low-temperature formaldehyde oxidation performance of ZIF-67 derived Co3O4[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 859-867. doi: 10.19906/j.cnki.JFCT.2022005

Effect of manganese modification on the low-temperature formaldehyde oxidation performance of ZIF-67 derived Co3O4

doi: 10.19906/j.cnki.JFCT.2022005
Funds:  The project was supported by the National Natural Science Foundation of China (21978314), the Scientific and Technological Innovation Programs of Higher Education Institutions of Shanxi Province (2021L527) and the Fund for Shanxi Province “1331 project”
  • Received Date: 2021-12-19
  • Accepted Date: 2022-01-19
  • Rev Recd Date: 2022-01-12
  • Available Online: 2022-01-28
  • Publish Date: 2022-08-01
  • In consideration of the inferior performance of ZIF-67 derived Co3O4 catalyst in the low-temperature formaldehyde oxidation, manganese was utilized to modify Co3O4 catalyst. The results showed that the Mn-Co3O4 catalyst exhibited the superior HCHO oxidation activity and achieved 90% HCHO conversion at a WHSV of 60000 mL/(gcat·h) and inlet HCHO concentration of 98.16 mg/m3 at 118 ℃. XRD, Raman and BET results demonstrated that the Mn-Co3O4 catalyst possessed lower crystallinity, more defects and specific surface area, which was conducive to the adsorption of reactants and exposure of more active sites. XPS, H2-TPR and O2-TPD results indicated that the strong interaction between Mn and Co species prominently improved the low temperature reducibility and O2 activation performance of Mn-Co3O4 catalyst, which endowed it with more abundant Co3+ and surface-adsorbed oxygen species. Therefore, the Mn-Co3O4 catalyst exhibited superior HCHO oxidation performance. Based on in-situ DRIFTS results, dioxymethylene and formate species were recognized as the main reaction intermediates of HCHO oxidation over the Mn-Co3O4 catalyst.
  • loading
  • [1]
    张长斌. 室内空气污染物催化氧化研究[J]. 环境化学,2015,34(5):817−823. doi: 10.7524/j.issn.0254-6108.2015.05.2015010509

    ZHANG Chang-bin. Study of catalytic oxidation of indoor air pollutants[J]. Environ Chem,2015,34(5):817−823. doi: 10.7524/j.issn.0254-6108.2015.05.2015010509
    [2]
    SALTHAMMER T, MENTESE S, MARUTZKY R. Formaldehyde in the indoor environment[J]. Chem Rev,2010,110(4):2536−2572. doi: 10.1021/cr800399g
    [3]
    TANG X J, BAI Y, DUONG A, SMITH M T, LI L Y, ZHANG L P. Formaldehyde in China: Production, consumption, exposure levels, and health effects[J]. Environ Int,2009,35(8):1210−1224. doi: 10.1016/j.envint.2009.06.002
    [4]
    LI R, HUANG Y, ZHU D D, HO W K, LEE S C, CAO J J. A review of Co3O4-based catalysts for formaldehyde oxidation at low temperature: Effect parameters and reaction mechanism[J]. Aerosol Sci Eng,2020,4:147−168. doi: 10.1007/s41810-020-00065-3
    [5]
    NIE L H, YU J G, JARONIEC M, TAO F F. Room-temperature catalytic oxidation of formaldehyde on catalysts[J]. Catal Sci Technol,2016,6(10):3649−3669.
    [6]
    YE J W, YU Y, FAN J J, CHENG B, YU J G, HO W K. Room-temperature formaldehyde catalytic decomposition[J]. Environ Sci: Nano,2020,7:3655−3709. doi: 10.1039/D0EN00831A
    [7]
    GUO J H, LIN C X, JIANG C J, ZHANG P Y. Review on noble metal-based catalysts for formaldehyde oxidation at room temperature[J]. Appl Surf Sci,2019,475:237−255. doi: 10.1016/j.apsusc.2018.12.238
    [8]
    BAI B Y, QIAO Q, LI J H, HAO J M. Progress in research on catalysts for catalytic oxidation of formaldehyde[J]. Chin J Catal,2016,37(1):102−122. doi: 10.1016/S1872-2067(15)61007-5
    [9]
    ZHANG C B, HE H, TANAKA K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature[J]. Appl Catal B: Environ,2006,65:37−43. doi: 10.1016/j.apcatb.2005.12.010
    [10]
    LI Y B, ZHANG C B, MA J Z, CHEN M, DENG H, HE H. High temperature reduction dramatically promotes Pd/TiO2 catalyst for ambient formaldehyde oxidation[J]. Appl Catal B: Environ,2017,217:560−569. doi: 10.1016/j.apcatb.2017.06.023
    [11]
    XIANG N, HOU Y Q, HAN X J, LI Y L, GUO Y P, LIU Y J, HUANG Z G. Promoting effect and mechanism of alkali Na on Pd/SBA-15 for room temperature formaldehyde catalytic oxidation[J]. ChemCatChem,2019,11:5098−5107. doi: 10.1002/cctc.201901039
    [12]
    崔维怡, 王希越, 谭乃迪. 热处理温度对Pt/TiO2纳米带复合物催化HCHO氧化性能的影响[J]. 燃料化学学报,2021,49(11):1701−1708. doi: 10.1016/S1872-5813(21)60113-5

    CUI Wei-yi, WANG Xi-yue, TAN Nai-di. Effect of thermal treatment temperature on catalytic performance of Pt/TiO2 nanobelt composite for HCHO oxidation[J]. J Fuel Chem Technol,2021,49(11):1701−1708. doi: 10.1016/S1872-5813(21)60113-5
    [13]
    CHEN B B, SHI C, CROCKER M, WANG Y, ZHU A M. Catalytic removal of formaldehyde at room temperature over supported gold catalysts[J]. Appl Catal B: Environ,2013,132−133:245−255. doi: 10.1016/j.apcatb.2012.11.028
    [14]
    LI Y B, CHEN X Y, WANG C Y, ZHANG C B, HE H. Sodium enhances Ir/TiO2 activity for catalytic oxidation of formaldehyde at ambient temperature[J]. ACS Catal,2018,8(12):11377−11385. doi: 10.1021/acscatal.8b03026
    [15]
    LU S H, WANG F, CHEN C C, HUANG F L, LI K L. Catalytic oxidation of formaldehyde over CeO2-Co3O4 catalysts[J]. J Rare Earth,2017,35(9):867−874. doi: 10.1016/S1002-0721(17)60988-8
    [16]
    LU S H, LI K L, HUANG F L, CHEN C C, SUN B. Efficient MnOx-Co3O4-CeO2 catalysts for formaldehyde elimination[J]. Appl Surf Sci,2017,400:277−282. doi: 10.1016/j.apsusc.2016.12.207
    [17]
    唐彤, 卫广程, 王慧敏, 刘墨, 张秋林, 宁平. Ce/Co比对Ag/CeO2-Co3O4催化剂低温氧化降解甲醛性能的影响[J]. 燃料化学学报,2019,47(5):590−597. doi: 10.3969/j.issn.0253-2409.2019.05.010

    TANG Tong, WEI Guang-cheng, WANG Hui-min, LIU Mo, ZHANG Qiu-lin, NING Ping. Effect of Ce/Co ratio on the catalytic performance of Ag/CeO2-Co3O4 in the low-temperature oxidation of formaldehyde[J]. J Fuel Chem Technol,2019,47(5):590−597. doi: 10.3969/j.issn.0253-2409.2019.05.010
    [18]
    BAI B Y, ARANDIYAN H, LI J H. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts[J]. Appl Catal B: Environ,2013,142−143:677−683. doi: 10.1016/j.apcatb.2013.05.056
    [19]
    ZHANG Q H, LIU X H, FAN W Q, WANG Y. Manganese-promoted cobalt oxide as efficient and stable non-noble metal catalyst for preferential oxidation of CO in H2 stream[J]. Appl Catal B: Environ,2011,102:207−214. doi: 10.1016/j.apcatb.2010.11.043
    [20]
    DU X Y, LI C T, ZHAO L K, ZHANG J, GAO L, SHENG J J, YI Y Y, CHEN J Q, ZENG G M. Promotional removal of HCHO from simulated flue gas over Mn-Fe oxides modified activated coke[J]. Appl Catal B: Environ,2018,232:37−48. doi: 10.1016/j.apcatb.2018.03.034
    [21]
    DU X Y, LI C T, ZHANG J, ZHAO L K, LI S H, LYU Y, ZHANG Y D, ZHU Y C, HUANG L. Highly efficient simultaneous removal of HCHO and elemental mercury over Mn-Co oxides promoted Zr-AC samples[J]. J Hazard Mater,2021,408:124830. doi: 10.1016/j.jhazmat.2020.124830
    [22]
    CAI T, HUANG H, DENG W, DAI Q G, LIU W, WANG X Y. Catalytic combustion of 1, 2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts[J]. Appl Catal B: Environ,2015,166−167:393−405. doi: 10.1016/j.apcatb.2014.10.047
    [23]
    SHI C, WANG Y, ZHU A M, CHEN B B, AU C T. MnxCo3−xO4 solid solution as high-efficient catalysts for low-temperature oxidation of formaldehyde[J]. Catal Commun,2012,28:18−22. doi: 10.1016/j.catcom.2012.08.003
    [24]
    ZHANG L, SHI L Y, HUANG L, ZHANG J P, GAO R H, ZHANG D S. Rational design of high-performance deNOx catalysts based on MnxCo3−xO4 nanocages derived from metal-organic frameworks[J]. ACS Catal,2014,4(6):1753−1763. doi: 10.1021/cs401185c
    [25]
    GUAN B Y, YU X Y, WU H B, LOU X W. Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion[J]. Adv Mater,2017,29:1703614. doi: 10.1002/adma.201703614
    [26]
    JIANG Z, LI Z P, QIN Z H, SUN H Y, JIAO X L, CHEN D R. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors[J]. Nanoscale,2013,5:11770−11775. doi: 10.1039/c3nr03829g
    [27]
    ZHANG P, GUAN B Y, YU L, LOU X W. Facile synthesis of multi-shelled ZnS-CdS cages with enhanced photoelectrochemical performance for solar energy conversion[J]. Chem,2018,4(1):162−173. doi: 10.1016/j.chempr.2017.10.018
    [28]
    ZHAO J H, TANG Z C, DONG F, ZHANG J Y. Controlled porous hollow Co3O4 polyhedral nanocages derived from metal-organic frameworks (MOFs) for toluene catalytic oxidation[J]. Mol Catal,2019,463:77−86. doi: 10.1016/j.mcat.2018.10.020
    [29]
    XU W J, CHEN X, CHEN J, JIA H P. Bimetal oxide CuO/Co3O4 derived from Cu ions partly-substituted framework of ZIF-67 for toluene catalytic oxidation[J]. J Hazard Mater,2021,403:123869. doi: 10.1016/j.jhazmat.2020.123869
    [30]
    TU S, CHEN Y, ZHANG X Y, YAO J Z, WU Y, WU H X, ZHANG J Y, WANG J L, MU B, LI Z, XIA Q B. Complete catalytic oxidation of formaldehyde at room temperature on MnxCo3−xO4 catalysts derived from metal-organic frameworks[J]. Appl Catal A: Gen,2021,611:117975. doi: 10.1016/j.apcata.2020.117975
    [31]
    李安明, 卫广程, 郝乔慧, 赵宾, 张秋林. Mn含量对CeO2-ZrO2-MnOx催化剂甲苯氧化净化性能的影响[J]. 燃料化学学报,2020,48(2):231−239. doi: 10.3969/j.issn.0253-2409.2020.02.013

    LI An-ming, WEI Guang-cheng, HAO Qiao-hui, ZHAO Bin, ZHANG Qiu-lin. Effect of Mn content on the catalytic performance of CeO2-ZrO2-MnOx in the oxidation of toluene[J]. J Fuel Chem Technol,2020,48(2):231−239. doi: 10.3969/j.issn.0253-2409.2020.02.013
    [32]
    ZHAO W T, ZHANG Y Y, WU X W, ZHAN Y Y, WANG X Y, AU C T, JIANG L L. Synthesis of Co-Mn oxides with double-shelled nanocages for low-temperature toluene combustion[J]. Catal Sci Technol,2018,8:4494−4502. doi: 10.1039/C8CY01206G
    [33]
    DONG C, QU Z P, QIN Y, FU Q, SUN H C, DUAN X X. Revealing the highly catalytic performance of spinel CoMn2O4 for toluene oxidation: involvement and replenishment of oxygen species using in situ designed-TP techniques[J]. ACS Catal,2019,9(8):6698−6710. doi: 10.1021/acscatal.9b01324
    [34]
    SINHA A K, SUZUKI K, TAKAHARA M, AZUMA H, NONAKA T, SUZUKI N, TAKAHASHI N. Preparation and characterization of mesostructured γ-manganese oxide and its application to VOCs elimination[J]. J Phys Chem C,2008,112:16028−16035. doi: 10.1021/jp805211z
    [35]
    ZHENG Y L, WANG W Z, JIANG D, ZHANG L. Amorphous MnOx modified Co3O4 for formaldehyde oxidation: improved low-temperature catalytic and photothermocatalytic activity.[J]. Chem Eng J,2016,284:21−27. doi: 10.1016/j.cej.2015.08.137
    [36]
    HAN D W, MA X Y, YANG X Q, XIAO M L, SUN H, MA L J, YU X L, GE M F. Metal organic framework-templated fabrication of exposed surface defect-enriched Co3O4 catalysts for efficient toluene oxidation[J]. J Colloid Interf Sci,2021,603:695−705. doi: 10.1016/j.jcis.2021.06.139
    [37]
    XIANG N, HAN X J, BAI Y R, LI Q Y, ZHENG J F, LI Y L, HOU Y Q, HUANG Z G. Size effect of γ-Al2O3 supports on the catalytic performance of Pd/γ-Al2O3 catalysts for HCHO oxidation[J]. Mol Catal,2020,494:111112. doi: 10.1016/j.mcat.2020.111112
    [38]
    CHEN D, QU Z P, SUN Y H, GAO K, WANG Y. Identification of reaction intermediates and mechanism responsible for highly active HCHO oxidation on Ag/MCM-41 catalysts[J]. Appl Catal B: Environ,2013,142−143:838−848. doi: 10.1016/j.apcatb.2013.06.025
    [39]
    ZHANG C B, LIU F D, ZHAI Y P, ARIGA H, YI N, LIU Y C, ASAKURA K, FLYTZANI-STEPHANOPOULOS M, HE H. Alkali-metal promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angew Chem Int Ed,2012,51:9628−9632. doi: 10.1002/anie.201202034
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (439) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return