Volume 50 Issue 7
Aug.  2022
Turn off MathJax
Article Contents
ZHENG Jian, LI Qiang, QIN Yu-cai, SONG Li-juan. Impact of the extra-framework aluminum species on the properties of Brønsted acid sites in HFAU zeolites by using thiophene probe molecule: A periodic DFT study[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 849-858. doi: 10.19906/j.cnki.JFCT.2022009
Citation: ZHENG Jian, LI Qiang, QIN Yu-cai, SONG Li-juan. Impact of the extra-framework aluminum species on the properties of Brønsted acid sites in HFAU zeolites by using thiophene probe molecule: A periodic DFT study[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 849-858. doi: 10.19906/j.cnki.JFCT.2022009

Impact of the extra-framework aluminum species on the properties of Brønsted acid sites in HFAU zeolites by using thiophene probe molecule: A periodic DFT study

doi: 10.19906/j.cnki.JFCT.2022009
Funds:  The project was supported by the National Natural Science Foundation of China (21902068, U20A20120, U1908203) and PetroChina Innovation Foundation (2020D-5007-0401)
  • Received Date: 2022-01-02
  • Accepted Date: 2022-01-25
  • Rev Recd Date: 2022-01-16
  • Available Online: 2022-02-12
  • Publish Date: 2022-08-01
  • The effects of extra-aluminum species (Al(OH)2+and Al3+) on the properties of Brønsted acid sites (BAS) were studied using thiophene as the model probe and HFAU as model zeolite by using a periodic DFT study. It is found that the Lewis acid strength of Al3+ species is higher than that of Al(OH)2+ species, and the hydroxyl species Al(OH)2+ in both directions have similar charge properties, that is, similar acid strength. The results of electronic properties combined with deprotonation energies (DPE) show that the BAS in 1-HFAU/Al(OH)2+, 2-HFAU/Al(OH)2+and HFAU/Al3+ zeolites have similar acid strength (1045 ± 11 kJ/mol). It can be concluded that the difference of hydroxyl direction and Lewis acid strength of Al(OH)2+and Al3+ species hardly affect the acid strength of BAS. By simulating the adsorption of thiophene, the adsorption energies and the changes of electronic properties and geometric structure during the adsorption process were obtained. The results show that thiophene in HFAU/Al3+ zeolite is easy to be adsorbed on Al3+ site, which is due to the strong Lewis acid strength of Al3+ adsorption site. The thiophene in HFAU/Al(OH)2+ zeolite is preferentially adsorbed on the BAS rather than the Al(OH)2+ adsorption site. In addition, Al(OH)2+ species can exert a weak interaction (dispersion interaction) on thiophene adsorbed on BAS to promote the adsorption of thiophene. The adsorption modes depend on the structure of Al(OH)2+ species and the direction of hydroxyl groups. This work explored the intrinsic properties of host-HFAU zeolite (containing extra-framework aluminum species) and guest-thiophene molecule from an electronic-level, and revealed the synergistic mechanism between acid sites.
  • loading
  • [1]
    SNYDER B, BOLS M L, RHODA H M, PLESSERS D, SCHOONHEYDT R A, SELS B F, SOLOMON E I. Cage effects control the mechanism of methane hydroxylation in zeolites[J]. Science,2021,373:327−331. doi: 10.1126/science.abd5803
    [2]
    ZU Y, WANG S, HUI Y, NI N, SONG L. Facile fabrication of a superior Cu(I)-NH4Y zeolite adsorbent for improving thiophene adsorption selectivity in the presence of aromatics or olefins[J]. Chem Eng J,2020,401(4):126112.
    [3]
    ZU Y, GUO Z, ZHENG J, HUI Y, SONG L. Investigation of Cu(I)-Y zeolites with different Cu/Al ratios towards the ultra-deep adsorption desulfurization: Discrimination and role of the specific adsorption active sites[J]. Chem Eng J,2020,380:122−319.
    [4]
    ZHANG L, QIN Y, ZHANG X, GAO X, SONG L. Further findings on the stabilization mechanism among modified Y zeolite with different rare earth ions[J]. Ind Eng Chem Res,2019,58(31):14016−14025. doi: 10.1021/acs.iecr.9b03036
    [5]
    BORONAT M, CORMA A. What is measured when measuring acidity in zeolites with probe molecules?[J]. ACS Catal,2019,9(2):1539−1548. doi: 10.1021/acscatal.8b04317
    [6]
    丁润东, 祖运, 周传行, 王焕, 莫周胜, 秦玉才, 孙兆林, 宋丽娟. CuNaY分子筛的有效吸附位与其脱硫性能的关联性研究[J]. 燃料化学学报,2018,46(4):451−458. doi: 10.3969/j.issn.0253-2409.2018.04.010

    DING Run-dong, ZU Yun, ZHOU Chuan-hang, WANG Huan, MO Zhou-sheng, QIN Yu-cai, SUN Zhao-lin, SONG L-juan. Insight into the correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite[J]. J Fuel Chem Technol,2018,46(4):451−458. doi: 10.3969/j.issn.0253-2409.2018.04.010
    [7]
    莫周胜, 秦玉才, 张晓彤, 段林海, 宋丽娟. 环己烯对噻吩在CuY分子筛上吸附的影响机制[J]. 物理化学学报,2017,33(6):1236−1241. doi: 10.3866/PKU.WHXB201703281

    MO Zhou-sheng, QIN Yu-cai, ZHANG Xiao-tong, DUAN Lin-hai, SONG Li-juan. Influencing mechanism of cyclohexene on thiophene adsorption over CuY zeolites[J]. Acta Phys Chim Sin,2017,33(6):1236−1241. doi: 10.3866/PKU.WHXB201703281
    [8]
    翟鹏, 郑健, 张锦研, 王焕, 秦玉才, 刘宏海, 宋丽娟. HZSM-5上正己烷酸催化裂解反应路径及机理的研究[J]. 燃料化学学报,2021,49(10):1522−1530. doi: 10.1016/S1872-5813(21)60158-5

    ZHAI Peng, ZHENG Jian, ZHANG Jin-yan, WANG Huan, QIN Yu-cai, LIU Hong-hai, SONG Li-juan. Insight into reaction path and mechanism of catalytic cracking of n-hexane in HZSM-5 zeolites[J]. J Fuel Chem Technol,2021,49(10):1522−1530. doi: 10.1016/S1872-5813(21)60158-5
    [9]
    LIU C, LI G, HENSEN E J M, PIDKO E A. Relationship between acidity and catalytic reactivity of faujasite zeolite: A periodic DFT study[J]. J Catal,2016,344:570−577. doi: 10.1016/j.jcat.2016.10.027
    [10]
    PU X, LIU N-W, SHI L. Acid properties and catalysis of USY zeolite with different extra-framework aluminum concentration[J]. Microporous Mesoporous Mater,2015,201:17−23. doi: 10.1016/j.micromeso.2014.08.056
    [11]
    LIU C, LI G, HENSEN E J M, PIDKO E A. Nature and catalytic role of extraframework aluminum in faujasite zeolite: A theoretical perspective[J]. ACS Catal,2015,5(11):7024−33. doi: 10.1021/acscatal.5b02268
    [12]
    SCHALLMOSER S, IKUNO T, WAGENHOFER M F, KOLVENBACH R, HALLER G L, SANCHEZ-SANCHEZ M, LERCHER J A. Impact of the local environment of Brønsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking[J]. J Catal,2014,316:93−102. doi: 10.1016/j.jcat.2014.05.004
    [13]
    ZHENG J, QIN Y, LI Q, ZHANG L, SONG L. A periodic DFT study of the synergistic mechanisms between extraframework aluminum species and Bronsted acid sites in HY zeolites[J]. Ind Eng Chem Res,2020,59(7):2736−2744. doi: 10.1021/acs.iecr.9b05277
    [14]
    CARVAJAL R, CHU P-J, LUNSFORD J H. The role of polyvalent cations in developing strong acidity: A study of lanthanum-exchanged zeolites[J]. J Catal,1990,125(1):123−131. doi: 10.1016/0021-9517(90)90083-V
    [15]
    WANG Q L, GIANNETTO G, GUISNET M. Dealumination of zeolites III. Effect of extra-framework aluminum species on the activity, selectivity, and stability of Y zeolites in n-heptane cracking[J]. J Catal,1991,130(2):471−482. doi: 10.1016/0021-9517(91)90129-R
    [16]
    MOTA C J A M R L, NOGUEIRA L. Reactivity of zeolite hydroxy groups toward sigma-donor bases[J]. J Chem Soc,1994,90(15):2297−2302.
    [17]
    YAN Z, MA D, ZHUANG J, LIU X, LIU X, HAN X, BAO X, CHANG F, XU L, LIU Z. On the acid-dealumination of USY zeolite: a solid state NMR investigation[J]. J Mol Catal A: Chem,2003,194(1):153−167.
    [18]
    KATADA N, KAGEYAMA Y, TAKAHARA K, KANAI T, ARA BEGUM H, NIWA M. Acidic property of modified ultra stable Y zeolite: Increase in catalytic activity for alkane cracking by treatment with ethylenediaminetetraacetic acid salt[J]. J Mol Catal A: Chem,2004,211(1):119−130.
    [19]
    KATADA N, NAKATA S, KATO S, KANEHASHI K, SAITO K, NIWA M. Detection of active sites for paraffin cracking on USY zeolite by 27Al MQMAS NMR operated at high magnetic field 16 T[J]. J Mol Catal A: Chem,2005,236(1):239−245.
    [20]
    MOTA C J A, BHERING D L, ROSENBACH N. A DFT study of the acidity of ultrastable Y zeolite: Where is the Brønsted/Lewis acid synergism?[J]. Angew Chem Int Ed,2004,43(23):3050−3053. doi: 10.1002/anie.200353049
    [21]
    BHERING D L, RAMÍREZ-SOLÍS A, MOTA C J A. A density functional theory based approach to extraframework aluminum species in zeolites[J]. J Phys Chem B,2003,107(18):4342−4347. doi: 10.1021/jp022331z
    [22]
    LI S, ZHENG A, SU Y, ZHANG H, CHEN L, YANG J, YE C, DENG F. Brønsted/Lewis acid synergy in dealuminated HY zeolite:   A combined solid-state NMR and theoretical calculation study[J]. J Am Chem Soc,2007,129(36):11161−11171. doi: 10.1021/ja072767y
    [23]
    VAN BOKHOVEN J A, WILLIAMS B A, JI W, KONINGSBERGER D C, KUNG H H, MILLER J T. Observation of a compensation relation for monomolecular alkane cracking by zeolites: the dominant role of reactant sorption[J]. J Catal,2004,224(1):50−59. doi: 10.1016/j.jcat.2004.02.003
    [24]
    VAN BOKHOVEN J A, TROMP M, KONINGSBERGER D C, MILLER J T, PIETERSE J A Z, LERCHER J A, WILLIAMS B A, KUNG H H. An explanation for the enhanced activity for light alkane conversion in mildly steam dealuminated mordenite: the dominant role of adsorption[J]. J Catal,2001,202(1):129−140. doi: 10.1006/jcat.2001.3265
    [25]
    GOUNDER R, JONES A J, CARR R T, IGLESIA E. Solvation and acid strength effects on catalysis by faujasite zeolites[J]. J Catal,2012,286:214−23. doi: 10.1016/j.jcat.2011.11.002
    [26]
    YI X, LIU K, CHEN W, LI J, XU S, LI C, XIAO Y, LIU H, GUO X, LIU S-B, ZHENG A. Origin and structural characteristics of tri-coordinated extra-framework aluminum species in dealuminated zeolites[J]. J Am Chem Soc,2018,140(34):10764−10774. doi: 10.1021/jacs.8b04819
    [27]
    PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R, SINGH D J, FIOLHAIS C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys Rev B,1992,46(11):6671−6687. doi: 10.1103/PhysRevB.46.6671
    [28]
    PERDEW J P, BURKE K, WANG Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys Rev B,1996,54(23):16533−16539. doi: 10.1103/PhysRevB.54.16533
    [29]
    HAMMER B, HANSEN L B, NØRSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Phys Rev B,1999,59(11):7413−7421. doi: 10.1103/PhysRevB.59.7413
    [30]
    PARR R G, YANG W. Density functional approach to the frontier-electron theory of chemical reactivity[J]. ChemInform,1984,15(42):13063.
    [31]
    JONES A J, IGLESIA E. The strength of Brønsted acid sites in microporous aluminosilicates[J]. ACS Catal,2015,5(10):5741−5755. doi: 10.1021/acscatal.5b01133
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (340) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return