Volume 50 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
ZHANG Zhao-xi, ZHONG Mei, YALKUN·Tursun, LI Jian. Effect of Fe modified Zr-based montmorillonites on the pyrolysis behavior of Xinjiang Hefeng coal[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 683-692. doi: 10.19906/j.cnki.JFCT.2022010
Citation: ZHANG Zhao-xi, ZHONG Mei, YALKUN·Tursun, LI Jian. Effect of Fe modified Zr-based montmorillonites on the pyrolysis behavior of Xinjiang Hefeng coal[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 683-692. doi: 10.19906/j.cnki.JFCT.2022010

Effect of Fe modified Zr-based montmorillonites on the pyrolysis behavior of Xinjiang Hefeng coal

doi: 10.19906/j.cnki.JFCT.2022010
Funds:  The project was supported by the National Natural Science Foundation of China (21766035), the Outstanding Youth Fund of Xinjiang Uygur Autonomous Region (2020Q001) and the Key Project of Joint Fund from National Nature Science Foundation of China and the Government of Xinjiang Uygur Autonomous Region (U1703252).
  • Received Date: 2021-11-30
  • Accepted Date: 2022-01-24
  • Rev Recd Date: 2022-01-14
  • Available Online: 2022-02-12
  • Publish Date: 2022-06-25
  • A serial of Fe modified Zr-based montmorillonites were prepared by mechanical ball milling and their characteristics were depicted by X-ray diffractometer (XRD), N2 adsorption-desorption instrument (BET), temperature-programmed desorption of ammonia (NH3-TPD, H2-TPD), X-ray photoelectron spectrometer (XPS). The results show that compared with 24ZrAM, when FeCl3·6H2O and FeCl2·4H2O are used as iron sources, Fe–O–Zr structure appears on the 3Cl-24ZrAM and 2Cl-24ZrAM catalysts. In the presence of Fe sulfate, the specific surface area of the catalysts decreases markedly. With the introducing of Fe, the total acid content of catalysts reduces. Wherein, 3Cl-24ZrAM has the highest acid content and strongest acid strength. H2-TPR shows that the temperature for Fe2O3 reduced to Fe3O4 in 3Cl-24ZrAM, 2Cl-24ZrAM and $3{\rm{NO}}_3^ - $-24ZrAM is lower than 500 ℃. Then, the effect of catalysts on the pyrolysis behavior of Xinjiang Hefeng coal and the bridge bond cleavage mechanism of different model compounds were investigated in a fixed bed reactor. It is noted that compared with 24ZrAM, the fraction of coal tar pitch all declines under the action of Fe species. Among them, 3Cl-24ZrAM has the highest cracking activity with the light tar fraction of 63%, which is 18.9% higher than that of 24ZrAM. Meanwhile, the content of light oil and phenol oil are 1.3 times and 1.4 times higher than that of 24ZrAM, respectively. As for long-chain hydrocarbons, a further decline by 0.7% is observed. In addition, the conversion rates of benzyl phenyl ether (BPE), dibenzyl and biphenyl increase by 5%, 1.6% and 43.9%, respectively.
  • loading
  • [1]
    莫海燕, 朱平, 彭文才, 李江兵, 张建树. 石河子烟煤Fenton试剂氧化的研究[J]. 石河子大学学报(自然科学版),2017,35(1):23−27.

    MO Hai-yan, ZHU Ping, PENG Wen-cai, LI Jiang-bing, ZHANG Jian-shu. Oxidation behaviours of Shihezi bituminous coal by Fenton reagents[J]. J Shihezi Uni: Nat Sci,2017,35(1):23−27.
    [2]
    JORDAN C A, AKAY G. Effect of CaO on tar production and dew point depression during gasification of fuel cane bagasse in a novel downdraft gasifier[J]. Fuel Process Technol,2013,106:654−660. doi: 10.1016/j.fuproc.2012.09.061
    [3]
    PARK D K, PH D, SONG E. Pressurized pyrolysis characteristics of two ranks of coal in a thermogravimetric analyzer[J]. J Energy Eng,2017,143(5):04017017. doi: 10.1061/(ASCE)EY.1943-7897.0000450
    [4]
    PRETORIUS G N, BUNT J R, GRABNER M, NEOMAGUS H, WAANDERS F B, EVERSON R C, STRYDOM C A. Evaluation and prediction of slow pyrolysis products derived from coals of different rank[J]. J Anal Appl Pyrolysis,2017,128:156−167. doi: 10.1016/j.jaap.2017.10.014
    [5]
    GAO S P, ZHAI L R, QIN Y H, WANG Z Q, ZHAO J T, FANG Y T. Investigation into the cleavage of chemical bonds induced by CO2 and its mechanism during the pressurized pyrolysis of coal[J]. Energy Fuels,2018,32(3):3243−3253. doi: 10.1021/acs.energyfuels.7b03950
    [6]
    WANG H J, FENG Y H, ZHANG X X, LIU W, ZHAO Y L. Study of coal hydropyrolysis and desulfurization by ReaxFF molecular dynamics simulation[J]. Fuel,2015,145:241−248. doi: 10.1016/j.fuel.2014.12.074
    [7]
    XU K, HU S, ZHANG L P, LI H J, CHEN Y F, XIONG Z, XU J, JIANG L, WANG Y, SU S, XIANG J. Effect of temperature on Shenfu coal pyrolysis process related to its chemical structure transformation[J]. Fuel Process Technol,2021,213:106662. doi: 10.1016/j.fuproc.2020.106662
    [8]
    LI Q, WANG Z H, HE Y, SUN Q, ZHANG Y W, KUMAR S, ZHANG K, CEN K F. Pyrolysis characteristics and evolution of char structure during pulverized coal pyrolysis in drop tube furnace: Influence of temperature[J]. Energy Fuels,2017,31(5):4799−4807. doi: 10.1021/acs.energyfuels.7b00002
    [9]
    WANG G J, HOU B L, ZHANG J, WANG H, GAO D Y, CHANG G Z, THALLADA B. Effect of pressure and H2 on the pyrolysis characteristics of lignite: Thermal behavior and coal char structural properties[J]. J Anal Appl Pyrolysis,2018,135:1−9. doi: 10.1016/j.jaap.2018.10.003
    [10]
    ZHANG W D, ZHAO Y J, SUN S Z, FENG D D, LI P F. Effects of pressure on the characteristics of bituminous coal pyrolysis char formed in a pressurized drop tube furnace[J]. Energy Fuels,2019,33(12):12219−12226. doi: 10.1021/acs.energyfuels.9b02774
    [11]
    FU Y, GUO Y H, ZHANG K X. Effect of three different catalysts (KCl, CaO, and Fe2O3) on the reactivity and mechanism of low-rank coal pyrolysis[J]. Energy Fuels,2016,30(3):2428−2433. doi: 10.1021/acs.energyfuels.5b02720
    [12]
    LIU S Q, TUO K Y, WANG L P, CHEN G, MA W P, FANG M Y. Microwave-assisted metal-catalyzed pyrolysis of low-rank coal: Promising option towards obtaining high-quality products[J]. J Energy Inst,2020,93(4):1602−1614. doi: 10.1016/j.joei.2020.01.022
    [13]
    XU L, TANG M C, DUAN L E, LIU B L, MA X X, ZHANG Y L, ARGYLE M D, FAN M H. Pyrolysis characteristics and kinetics of residue from China Shenhua industrial direct coal liquefaction plant[J]. Thermochim Acta, 2014, 589: 1–10.
    [14]
    AMIN M N, LI Y, RAZZAQ R, LU X M, LI C S, ZHANG S J. Pyrolysis of low rank coal by nickel based zeolite catalysts in the two-staged bed reactor[J]. J Anal Appl Pyrolysis,2016,118:54−62. doi: 10.1016/j.jaap.2015.11.019
    [15]
    ZHONG M, ZOU D, XU Y B, JIN L J, PAN Y. Effect of kaolinites modified with Zr and transition metals on the pyrolysis behaviors of low-rank coal and its model compound[J]. J Energy Inst,2021,95:41−51. doi: 10.1016/j.joei.2020.11.009
    [16]
    ZHAO H Y, LI Y H, SONG Q, MA Q X, MA L, LIU S C, SHU Xi Q. The rate-limiting step in the integrated coal tar decomposition and upgrading-iron ore reduction reaction determined by kinetic analysis[J]. J Anal Appl Pyrolysis,2020,147:104808. doi: 10.1016/j.jaap.2020.104808
    [17]
    SONG Q, ZHAO H Y, CHANG S Q, LI Y, ZOU F, SHU X Q, ZHANG P. Study on the catalytic pyrolysis of coal volatiles over hematite for the production of light tar[J]. Fuel,2020,151:104927.
    [18]
    QI X J, GUO X, XUE L C, ZHENG C G. Effect of iron on Shenfu coal char structure and its influence on gasification reactivity[J]. J Anal Appl Pyrolysis,2014,110:401−407. doi: 10.1016/j.jaap.2014.10.011
    [19]
    FENG J, XUE X Y, LI X H, LI W Y, GUO X F, LIU K. Products analysis of Shendong long-flame coal hydropyrolysis with iron-based catalysts[J]. Fuel Process Technol,2015,130:96−100. doi: 10.1016/j.fuproc.2014.09.035
    [20]
    ZHAO H Y, LI Y H, SONG Q, LV J X, SHU Y F, LIANG X X, SHU Xin-qian. Effects of iron ores on the pyrolysis characteristics of a low-rank bituminous coal[J]. Energy Fuels,2016,30(5):3831−3839. doi: 10.1021/acs.energyfuels.6b00061
    [21]
    HE L, HUI H L, LI S G, LIN W G. Production of light aromatic hydrocarbons by catalytic cracking of coal pyrolysis vapors over natural iron ores[J]. Fuel,2018,216:227−232. doi: 10.1016/j.fuel.2017.12.005
    [22]
    BIESEKI L, BERTELL F, TREICHEL H, PENHA F G PERGHER S B C. Acid treatments of montmorillonite-rich clay for Fe removal using a factorial design method[J]. Mater Res,2013,16(5):1122−1127. doi: 10.1590/S1516-14392013005000114
    [23]
    钟梅, 赵渊, 李显, 马凤云. K+, Ca2+ 和 Fe3+ 对和丰煤热解产物分布, 结构及品质的影响[J]. 燃料化学学报,2018,46(9):1044−1054. doi: 10.3969/j.issn.0253-2409.2018.09.003

    ZHONG Mei, ZHAO Yuan, LI Xian, MA Feng-yun. Effects of K+, Ca2+ and Fe3+ on the distribution structure and quality of the pyrolysis products of Hefeng coal[J]. J Fuel Chem Technol,2018,46(9):1044−1054. doi: 10.3969/j.issn.0253-2409.2018.09.003
    [24]
    石磊. 煤共价键结构在热解过程中的阶段解离研究[D]. 北京: 北京化工大学, 2014.

    Shi L. Study on the cleavage of covalent bonds in coal pyrolysis from various temperature stages[D]. Beijing: Beijing University of Chemical Technology, 2014.
    [25]
    ZOU D, JIN L J, ZHONG M, HU H Q, MA F Y. Catalytic performance of modified kaolinite in pyrolysis of benzyl phenyl ether: A model compound of low rank coal[J]. J Energy Inst,2020,93(6):2314−2324. doi: 10.1016/j.joei.2020.07.003
    [26]
    PETKOVA V, PELOVSKI Y. Investigation on the thermal properties of Fe2O(SO4)2. Part II[J]. J Therm Anal Calorim,2001,64(3):1037−1044. doi: 10.1023/A:1011599719230
    [27]
    LACALAMITA M, VENTRUTI G, DELLA V G, RADICA F, MAURO D, SCHINGARO E. In Situ high-temperature X-ray powder diffraction and infrared spectroscopic study of melanterite, FeSO4·7H2O[J]. Miner,2021,11(4):392. doi: 10.3390/min11040392
    [28]
    MULLER M, VILLALBA J C, ANAISSI J F. Thermal decomposition (TG-DTA) of iron salts [FeCl3·6H2O] and [Fe(NO3)3·9H2O] with morphologic and chemical analysis of final product[J]. Semina: Ciências Exatas e Tecnológicas,2014,35(1):9−14.
    [29]
    车欣, 王志, 公旭中, 郭占成, 王福生. FeCl2强化浸锌渣焙烧反应性的热重解析[J]. 矿冶工程,2010,30(5):74−78. doi: 10.3969/j.issn.0253-6099.2010.05.019

    CHE Xin, WANG Zhi, GONG Xu-zhong, GUO Zhan-cheng, WANG Fu-sheng. Hermogravimetry analysison roasting reactivity of zinc-leaching residues strengt henedby FeCl2[J]. Mining Metall Eng,2010,30(5):74−78. doi: 10.3969/j.issn.0253-6099.2010.05.019
    [30]
    MASSET P, POINSO J, POIGNET J. TG/DTA/MS study of the thermal decomposition of FeSO4· 6H2O[J]. J Therm Anal Calorim,2006,83(2):457−462. doi: 10.1007/s10973-005-7267-6
    [31]
    ZHONG M, ZHAI J R, XU Y B, JIN L J, YE Y F, HU H Q, MA F Y. Catalytic cracking of coal-tar model compounds over ZrO2/Al2O3 and Ni-Ce/Al2O3 catalysts under steam atmosphere[J]. Fuel,2020,263:116763. doi: 10.1016/j.fuel.2019.116763
    [32]
    PRADHAN S, MISHRA B G. Catalytic application of SO42−/Fe–ZrO2 nanoparticles synthesized by a urea hydrolysis method for environmentally benign one pot synthesis of 1, 8-dioxodecahydroacridines[J]. RSC Adv,2015,5(105):86179−86190. doi: 10.1039/C5RA11136F
    [33]
    管秀丽. 元素掺杂蒙脱石固体酸的制备、表征及其芳烃开环裂解性能[D]. 安徽: 安徽工业大学, 2016.

    Guan Xiu-li. Preparation, characterization of solid acid of montmorillonite doped with Zr and Ti and their properties of aromatic ring opening and cracking[D]. Anhui: Anhui University of Technology, 2016.
    [34]
    LIU Y, YANG X H, YAN C J, WANG H Q, ZHOU S. Solvent-free synthesis of zeolite LTA monolith with hierarchically porous structure from metakaolin[J]. Mater Lett,2019,248:28−31. doi: 10.1016/j.matlet.2019.03.135
    [35]
    YANG H Y, ZHOU Y, TONG D S, YANG M, FANG K, ZHOU C H, YU W H. Catalytic conversion of cellulose to reducing sugars over clay-based solid acid catalyst supported nanosized SO42−-ZrO2[J]. J Catal,2019,185:105376.
    [36]
    晏冬霞, 王华, 李孔斋, 魏永刚, 祝星, 程显名. 铈铁锆三元复合氧化物上碳烟的催化燃烧[J]. 燃料化学学报,2011,39(3):229−235. doi: 10.3969/j.issn.0253-2409.2011.03.013

    YAN Dong-xia, WANG Hua, LI Kong-zhai, WEI Yong-gang, ZHU Xing, CHENG Xian-ming. Catalytic combustion of soot on Ce–Fe–Zr–O ternary mixed oxide catalysts[J]. J Fuel Chem Technol,2011,39(3):229−235. doi: 10.3969/j.issn.0253-2409.2011.03.013
    [37]
    FANG Z H, HUANG M Y, LIU B, JIANG F, XU Y B, LIU X H. Identifying the crucial role of water and chloride for efficient mild oxidation of methane to methanol over a [Cu2 (μ-O)]2+-ZSM-5 catalyst[J]. J Catal, 2021, 405: 1−14.
    [38]
    刘宗宽, 张磊, 江健, 边城. 煤焦油加氢精制和加氢裂化催化剂的研究进展[J]. 化工进展,2012,31(12):2672−2677.

    LIU Zong-kuan, ZHANG Lei, JIANG Jian, BIAN Cheng. Advances in coal tar hydro-refining and hydro-cracking catalysts[J]. Chem Ind Eng Prog,2012,31(12):2672−2677.
    [39]
    金其奇, 谢峻林, 李凤祥, 齐凯, 方德, 何峰. 涂层组分对堇青石脱硝催化剂性能的影响[J]. 化工进展,2019,38(3):1411−1418.

    JIN Qi-qi, XIE Jun-lin, LI Feng-xiang, QI Kai, FANG De, HE Feng. Performance of structured cordierite catalysts with different coatings for NH3-SCR[J]. Chem Ind Eng Prog,2019,38(3):1411−1418.
    [40]
    WANG D C, JIN L J, LI Y, HU H Q. Partial oxidation of vacuum residue over Al and Zr-doped α-Fe2O3 catalysts[J]. Fuel,2017,210:803−810. doi: 10.1016/j.fuel.2017.09.008
    [41]
    SONG Q, ZHAO H Y, CHANG S Q, LI Y, ZOU F, SHU X Q, ZHANG P. Study on the catalytic pyrolysis of coal volatiles over hematite for the production of light tar[J]. J Anal Appl Pyrolysis,2020,151:104927. doi: 10.1016/j.jaap.2020.104927
    [42]
    乐嘉炜. 煤中小分子化合物及催化剂对煤热解产物分布的影响[D]. 上海: 华东理工大学, 2017.

    LE Jia-wei. Research on the effect of low molecular compounds and catalysts on the coal pyrolysis products distribution[D]. Shanghai: East China University of Science and Technology, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (290) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return