Volume 50 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
YU Wei, LIU Li-jun, GAO Bo, WANG Li-na, YUE Shuang-ling. Pore structure of coal gasification fine slag based on nitrogen adsorption and nuclear magnetic resonance analysis[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 966-973. doi: 10.19906/j.cnki.JFCT.2022017
Citation: YU Wei, LIU Li-jun, GAO Bo, WANG Li-na, YUE Shuang-ling. Pore structure of coal gasification fine slag based on nitrogen adsorption and nuclear magnetic resonance analysis[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 966-973. doi: 10.19906/j.cnki.JFCT.2022017

Pore structure of coal gasification fine slag based on nitrogen adsorption and nuclear magnetic resonance analysis

doi: 10.19906/j.cnki.JFCT.2022017
Funds:  The project was supported by National Key Research and Development Program (2020YFC1910000) and Natural Science Basic Research Plan in Shaanxi Province of China (2021JLM-15).
  • Received Date: 2022-01-24
  • Accepted Date: 2022-03-10
  • Rev Recd Date: 2022-02-21
  • Available Online: 2022-03-18
  • Publish Date: 2022-08-26
  • The pore structure of coal gasification fine slag in Ningxia was characterized and analyzed by low temperature nitrogen adsorption, scanning electron microscope and low field NMR. The pore morphology is mainly fracture shape, and the BET specific surface area of each particle size is large, which is 125.78−589.78 m2/g. The SEM analysis shows that the BJH pore diameter is quite different from the actual situation, and the analysis of pore structure only by low-temperature nitrogen adsorption method has certain limitations. The low field NMR method shows that the products pore sizes of all particle sizes contain micropores, transition pores, mesopores and macropores, and the total porosity is about 27%, mainly mesopores and macropores, followed by micropores and transition pores. The pore structure shows that the products of different particle sizes of coal gasification fine slag have certain adsorption properties, but the medium and large pores are the main storage space of water, resulting in difficulty in dehydration.
  • loading
  • [1]
    刘艳丽, 李强, 陈占飞, 赵江, 赵俞, 孙利鹏. 煤气化渣特性分析、研究进展与展望[J]. 煤炭科学技术, https://kns.cnki.net/kcms/detail/11.2402.TD.20210817.1421.002.html.

    LIU Yan-li, LI Qiang, CHEN Zhan-fei, ZHAO Jiang, ZHAO Yu, SUN Li-peng. Characteristics analysis, research progress and prospect of coal gasification slag[J]. Coal Sci Technol, https://kns.cnki.net/kcms/detail/11.2402.TD.20210817.1421.002.html.
    [2]
    吴昊东, 邵丰华, 吕鹏, 白永辉, 宋旭东, 王焦飞, 郭庆华, 王学斌, 于广锁. 气流床煤气化细渣结构、性质与其粒度分布关系研究[J]. 燃料化学学报,2022,50(5):513−522. doi: 10.19906/j.cnki.JFCT.2021089

    WU Hao-dong, SHAO Feng-hua, LÜ Peng, BAI Yong-hui, SONG Xu-dong, WANG Jiao-fei, GUO Qing-hua, WANG Xue-bin, YU Guang-suo. Study on the relationship between structure, properties and size distribution of fine slag from entrained flow gasification[J]. J Fuel Chem Technol,2022,50(5):513−522. doi: 10.19906/j.cnki.JFCT.2021089
    [3]
    宋瑞领, 蓝天. 气流床煤气化炉渣特性及综合利用研究进展[J]. 煤炭科学技术,2021,49(4):227−236.

    SONG Rui-ling, LAN Tian. Review on characteristics and utilization of entrained-flow coal gasification residue[J]. Coal Sci Technol,2021,49(4):227−236.
    [4]
    LV D, BAI Y, WANG J, SONG X, TANG G. Structural features and combustion reactivity of residual carbon in fine slag from entrained-flow gasification[J]. J Fuel Chem Technol,2021,49(2):129−136. doi: 10.1016/S1872-5813(21)60011-7
    [5]
    LIU X, JIN Z, JING Y, FAN P, DONG L. Review of the characteristics and graded utilization of coal gasification slag[J]. Chin J Chem Eng,2021,35:92−106. doi: 10.1016/j.cjche.2021.05.007
    [6]
    宁永安, 段一航, 高宁博, 全翠. 煤气化渣组分回收与利用技术研究进展[J]. 洁净煤技术,2020,26(S1):14−19.

    NING Yong-an, DUAN Yi-hang, GAO Ning-bo, QUAN Cui. Progress of component recycling and utilization technology of coal gasification slag[J]. Clean Coal Technol,2020,26(S1):14−19.
    [7]
    吴海骏. 固体废弃物为原料制备无机多孔材料(膜)及其性能研究[D]. 合肥: 合肥工业大学, 2015.

    WU Hai-jun. The preparation and characterization of inorganic porous material (membrane) from solid waste[D]. Hefei: Hefei University of Technology, 2015.
    [8]
    赵永彬, 吴海骏, 张学斌, 刘洪刚, 井云环, 袁伟. 煤气化残渣基多孔陶瓷的制备研究[J]. 洁净煤技术,2020,22(5):7−11.

    ZHAO Yong-bin, WU Hai-jun, ZHANG Xue-bin, LIU Hong-gang, JING Yun-huan, YUAN Wei. Fabrication of porous ceramic from coal gasification residual[J]. Clean Coal Technol,2020,22(5):7−11.
    [9]
    LIU S, CHEN X, AI W, WEI C. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption[J]. J Cleaner Prod,2019,212:1062−1071. doi: 10.1016/j.jclepro.2018.12.060
    [10]
    ZHANG J, ZUO J, AI W, LIU S, WEI C. Preparation of a new high-efficiency resin deodorant from coal gasification fine slag and its application in the removal of volatile organic compounds in polypropylene composites[J]. J Hazard Mater,2020,384:121347.
    [11]
    申艳军, 王旭, 赵春虎, 王生全, 郭晨, 师庆民, 马文. 榆神府矿区富油煤多尺度孔隙结构特征[J]. 煤田地质与勘探,2021,49(3):33−41. doi: 10.3969/j.issn.1001-1986.2021.03.005

    SHEN Yan-jun, WANG Xu, ZHAO Chun-hu, WANG Sheng-quan, GUO Chen, SHI Q ing-min, MA Wen. Experimental study on multi-scale pore structure characteristics of tar-rich coal in Yushenfu mining area[J]. Coal Geol Explor,2021,49(3):33−41. doi: 10.3969/j.issn.1001-1986.2021.03.005
    [12]
    杨甫, 贺丹, 马东民, 段中会, 田涛, 付德亮. 低阶煤储层微观孔隙结构多尺度联合表征[J]. 岩性油气藏,2020,32(3):14−23. doi: 10.12108/yxyqc.20200302

    YANG Fu, HE Dan, MA Dong-min, DUAN Zhong-hui, TIAN Tao, FU De-liang. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir[J]. Lithol Reservoirs,2020,32(3):14−23. doi: 10.12108/yxyqc.20200302
    [13]
    LI Y, ZHANG C, TANG D, GAN Q, NIU X, WANG K, SHEN R. Coal pore size distributions controlled by the coalification process: An experimental study of coals from the Junggar, Ordos and Qinshui basins in China[J]. Fuel,2017,206:352−363. doi: 10.1016/j.fuel.2017.06.028
    [14]
    ZHANG J, WEI C, JU W, YAN G, LU G, HOU X, ZHENG K. Stress sensitivity characterization and heterogeneous variation of the pore-fracture system in middle-high rank coals reservoir based on NMR experiments[J]. Fuel,2019,238:331−344. doi: 10.1016/j.fuel.2018.10.127
    [15]
    林海飞, 卜婧婷, 严敏, 白杨. 中低阶煤孔隙结构特征的氮吸附法和压汞法联合分析[J]. 西安科技大学学报,2019,39(1):1−8.

    LIN Hai-fei, BU Jing-ting, YAN Min, BAI Yang. Joint analysis of pore structure characteristics of middle and low rank coal with nitrogen adsorption and mercury intrusion method[J]. J Xi’an Univ Sci Technol,2019,39(1):1−8.
    [16]
    杨青, 李剑, 田文广, 孙斌, 祝婕, 杨宇航. 海拉尔盆地褐煤全孔径结构特征及影响因素[J]. 天然气地球科学,2020,31(11):1603−1614.

    YANG Qing, LI Jian, TIAN Wen-guang, SUN Bin, ZHU Jie, YANG Yu-hang. Characteristics on pore structures on full scale of lignite and main controlling factors in Hailar Basin[J]. Nat Gas Geosci,2020,31(11):1603−1614.
    [17]
    陈尚斌, 朱炎铭, 王红岩, 刘洪林, 魏伟, 方俊华. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报,2012,37(3):438−444.

    CHEN Shang-bin, ZHU Yan-ming, WANG Hong-yan, LIU Hong-lin, WEI Wei, FANG Jun-hua. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. J China Coal Soc,2012,37(3):438−444.
    [18]
    赵迪斐, 郭英海, 毛潇潇, 卢晨刚, 李咪, 钱福常. 基于压汞、氮气吸附与FE-SEM的无烟煤微纳米孔特征[J]. 煤炭学报,2017,42(6):1517−1526.

    ZHAO Di-fei, GUO Ying-hai, MAO Xiao-xiao, LU Chen-gang, LI Mi, QIAN Fu-chang. Characteristics of macro-nanopores in anthracite coal based on mercury injection, nitrogen adsorption and FE-SEM[J]. J China Coal Soc,2017,42(6):1517−1526.
    [19]
    单长安, 张廷山, 梁兴, 胡冉冉, 赵卫卫. 富镜质组和富惰质组高阶煤纳米孔隙结构特征[J]. 石油学报,2019,39(1):1−8. doi: 10.7623/syxb201901001

    SHAN Chang-an, ZHANG Ting-shan, LIANG Xing, HU Ran-ran, ZHAO Wei-wei. Nanopore structure characteristics of high-rank vitrinite-and inertinite-coal[J]. Acta Pet Sin,2019,39(1):1−8. doi: 10.7623/syxb201901001
    [20]
    娄彤, 张忠孝, 周志豪. 气流床气化炉高熔点煤气化反应模拟[J]. 热能与动力工程,2015,30(3):406−412.

    LOU Tong, ZHANG Zhongxiao, ZHOU Zhihao. Simulation of the high ash melting point coal gasification reaction in a gas flow bed gasifier[J]. J Eng Therm Energy Power,2015,30(3):406−412.
    [21]
    GB/T 19587—2017, 气体吸附BET法测定固态物质比表面积[S].

    GB/T 19587—2017, Determination of the specific surface area of solids by gas adsorption using the BET method[S].
    [22]
    王学斌, 于伟, 张韬, 白永辉, 刘莉君, 史兆臣, 殷瑞, 谭厚章. 基于粒度分级的煤气化细渣特性分析及利用研究[J]. 洁净煤技术,2021,27(3):61−69.

    WANG Xue-bin, YU Wei, ZHANG Tao, BAI Yong-hui, LIU Li-jun, SHI Zhao-chen, YIN Rui, TAN Hou-zhang. Characteristic analysis and utilization of coal gasification fine slag based on particle size classification[J]. Clean Coal Technol,2021,27(3):61−69.
    [23]
    杨明, 柳磊, 张学博, 毛俊睿, 柴沛. 不同阶煤孔隙结构与流体特性的核磁共振试验研究[J]. 中国安全科学学报,2021,31(1):81−88.

    YANG Ming, LIU Lei, ZHANG Xue-bo, MAO Jun-rui, CHAI Pei. Nuclear magnetic resonance experimental study on pore structure and fluid characteristics of coal at different ranks[J]. China Saf Sci J,2021,31(1):81−88.
    [24]
    夏文成, 毛玉强. 基于低场核磁共振表征的矿物孔隙润湿规律[J]. 煤炭学报,2021,46(2):602−613.

    XIA Wencheng, MAO Yuqiang. Pore wetting law of minerals by 1H LF-NMR characterization[J]. J China Coal Soc,2021,46(2):602−613.
    [25]
    LI X, KANG Y, HAGHIGHI M. Investigation of pore size distributions of coals with different structures by nuclear magnetic resonance (NMR) and mercury intrusion porosimetry (MIP)[J]. Meas,2018,116:122−128. doi: 10.1016/j.measurement.2017.10.059
    [26]
    孟宪明. 煤孔隙结构和煤对气体吸附特性研究[D]. 泰安: 山东科技大学, 2007.

    MENG Xianming. Study on the pore structure of coals and characteristics of gases adsorption on coals[D]. Taian: Shandong University of Science and Technology, 2007.
    [27]
    GUO F, LIU H, ZHAO X, WU J. Insights on water temporal-spatial migration laws of coal gasification fine slag filter cake during water removal process and its enlightenment for efficient dewatering[J]. Fuel,2021,292:120274.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (558) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return