Volume 50 Issue 9
Oct.  2022
Turn off MathJax
Article Contents
ZHANG Yan-long, BAI Zong-qing, FENG Zhi-hao, HOU Ran-ran, JIA Yu-xing, ZHANG Ting-ting, HOU Yu-jie, KONG Ling-xue, GUO Zhen-xing, BAI Jin, LI Wen. Effect of reaction conditions on structure and thermal reactivity of asphaltenes from mild liquefaction of Hami coal[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1105-1115. doi: 10.19906/j.cnki.JFCT.2022020
Citation: ZHANG Yan-long, BAI Zong-qing, FENG Zhi-hao, HOU Ran-ran, JIA Yu-xing, ZHANG Ting-ting, HOU Yu-jie, KONG Ling-xue, GUO Zhen-xing, BAI Jin, LI Wen. Effect of reaction conditions on structure and thermal reactivity of asphaltenes from mild liquefaction of Hami coal[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1105-1115. doi: 10.19906/j.cnki.JFCT.2022020

Effect of reaction conditions on structure and thermal reactivity of asphaltenes from mild liquefaction of Hami coal

doi: 10.19906/j.cnki.JFCT.2022020
Funds:  The project was supported by National Natural Science Foundation of China (22178371, 22078353), Natural Science Foundation Project of Shanxi Province (201901D111002(ZD)) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21020100)
  • Received Date: 2022-02-23
  • Accepted Date: 2022-03-15
  • Rev Recd Date: 2022-03-11
  • Available Online: 2022-03-25
  • Publish Date: 2022-10-21
  • Asphaltenes including asphaltene and preasphaltene (PAA) are the important products of the direct coal liquefaction process, whose structure and property are essential for the high-efficiency liquefaction and the subsequent utilization. The structure and property of PAA are closely related to the liquefaction conditions. Therefore, in this work, the effects of liquefaction temperature, residence time, pressure, and the ratio of solvent to coal on the structure and property of PAA obtained from mild liquefaction of Hami coal (named as HMPAA), were investigated in a batch autoclave with tetrahydronaphthalene as solvent. The structure features of HMPAA obtained under different conditions were characterized by elemental analysis, infrared spectroscopy and solid-state 13C-NMR. Thermal reactivity of HMPAA and the evolution curves of gas product during pyrolysis were analyzed by TG-MS. The results showed that the yield of HMPAA increased with decreasing reaction temperature, increasing pressure, decreasing residence time and increasing the ratio of solvent to coal. The highest HMPAA yield was 35.0% at 340 ℃, 3 MPa, residence time of 1 h, and the ratio of solvent to coal of 2∶1. The carbon structure of HMPAA consisted of aliphatic carbon and aromatic carbon, while the latter accounted for about 80%. Increasing liquefaction temperature was favorable to the formation of HMPAA with higher aromaticity. The aromatic condensation degree of HMPAA increased with extended residence time. The aromaticity and aromatic condensation degree of HMPAA decreased with the increase of the ratio of solvent to coal. The liquefaction pressures examined in this work had little effect on the structure and property of HMPAA. The pyrolysis of HMPAA started at about 250 ℃ and the peak temperature of maximum weight loss was between 400 ℃ and 500 ℃, and the final weight loss was over 40%. The thermal reactivity of HMPAA increased with decreasing liquefaction temperature and increasing the ratio of solvent to coal, and the change of pressure had little effect on the thermal reactivity of HMPAA.
  • loading
  • [1]
    刘雅文. 《bp世界能源统计年鉴》2021年版发布: 能源市场遭受巨大冲击[J]. 中国石油和化工,2021,(8):32−33.

    LIU Ya-wen. bp Statistical Review of World Energy 2021 edition published: The energy market suffered a huge shock[J]. China Pet Chem Ind,2021,(8):32−33.
    [2]
    李会玲. 煤制油技术发展现状及分析[J]. 山东化工,2017,46(10):59−61. doi: 10.3969/j.issn.1008-021X.2017.10.021

    LI Hui-ling. Research progress on coal liquefaction technology[J]. Shandong Chem Ind,2017,46(10):59−61. doi: 10.3969/j.issn.1008-021X.2017.10.021
    [3]
    史士东. 煤加氢液化工程学基础 [M]. 北京: 化学工业出版社, 2012.

    SHI Shi-dong. Fundamentals of Coal Hydrogenation and Liquefaction Engineering[M]. Beijing: Chemical Industry Press, 2012.
    [4]
    胡发亭, 王学云, 毛学锋, 李军芳, 赵鹏. 煤直接液化制油技术研究现状及展望[J]. 洁净煤技术,2020,26(1):99−109.

    HU Fa-ting, WANG Xue-yun, MAO Xue-feng, LI Jun-fang, ZHAO Peng. Research progress and prospect of direct liquefaction technology from coal to oil[J]. Clean Coal Technol,2020,26(1):99−109.
    [5]
    李文英, 李旺, 冯杰. 褐煤直接液化过程中存在的问题与思考[J]. 煤炭学报,2020,45(1):414−423.

    LI Wen-ying, LI Wang, FENG Jie. An overview on issues for lignite direct liquefaction[J]. J China Coal Soc,2020,45(1):414−423.
    [6]
    胡发亭, 颜丙峰, 王光耀, 谷小会, 常秋连. 我国煤制燃料油技术进展及工业化现状[J]. 洁净煤技术,2019,25(1):57−63.

    HU Fa-ting, YAN Bing-feng, WANG Guang-yao, GU Xiao-hui, CHANG Qiu-lian. Technical progress and industrialization status of coal to fuel oil in China[J]. Clean Coal Technol,2019,25(1):57−63.
    [7]
    山西煤炭化学研究所. “万吨级煤温和加氢热解(液化)中试”项目通过运行考核[EB/OL]. https://www.cas.cn/syky/201910/t20191031_4722049.shtml, 2019-11-04/2022-02-22.
    [8]
    肖南, 邱介山. 煤沥青基功能碳材料的研究现状及前景[J]. 化工进展,2016,35(6):1804−1811.

    XIAO Nan, QIU Jie-shan. Progress in synthesis and applications of functional carbon materials from coal tar pitch[J]. Chem Ind Eng Prog,2016,35(6):1804−1811.
    [9]
    WANG X L, LI Y Z, YANG C, CAO Y L, SU X T, TAHIR M U. Self-template porous carbon by direct activation of high-ash coal liquefaction residue for high-rate supercapacitor electrodes[J]. Int J Energy Res,2021,45(3):4782−4792. doi: 10.1002/er.6096
    [10]
    LI X, TIAN X D, YANG T, HE Y T, LIU W H, SONG Y, LIU Z J. Coal liquefaction residues based carbon nanofibers film prepared by electrospinning: an effective approach to coal waste management[J]. ACS Sustainable Chem Eng,2019,7(6):5742−5750. doi: 10.1021/acssuschemeng.8b05210
    [11]
    LIU R F, LI Y L, WANG C L, XIAO N, HE L, GUO H Y, WAN P, ZHOU Y, QIU J S. Enhanced electrochemical performances of coal liquefaction residue derived hard carbon coated by graphene as anode materials for sodium-ion batteries[J]. Fuel Process Technol,2018,178:35−40. doi: 10.1016/j.fuproc.2018.04.033
    [12]
    陈茺, 许学敏, 高晋生. 煤中前沥青烯与沥青烯性质的研究[J]. 华东理工大学学报,1998,24(1):31−34.

    CHEN Chong, XU Xue-min, GAO Jin-sheng. Nature of preasphaltene and asphaltene in coal[J]. J East Chin Univ Sci Technol,1998,24(1):31−34.
    [13]
    YAN J C, HE J, YANG Q T, BAI Z Q, LEI Z P, LI Z K, XUE C, WANG Z C, REN S B, KANG S G, SHUI H F. A study of gasification behavior of residues from mild coal hydro-liquefaction[J]. Fuel,2021,293(1):120456.
    [14]
    WANG Z C, HU J C, SHUI H F, REN S B, WEI C, PAN C X, LEI Z P, CUI X P. Study on the structure and association of asphaltene derived from liquefaction of lignite by fluorescence spectroscopy[J]. Fuel,2013,109:94−100. doi: 10.1016/j.fuel.2012.12.011
    [15]
    王祖山. 煤直接液化重质中间产物结构与组成研究[D]. 马鞍山: 安徽工业大学, 2010.

    WANG Zu-shan. Study on the structure and composition of heavy intermediate products from the direct liquefaction of coal[D]. Maanshan: Anhui University of Technology, 2010.
    [16]
    张媛媛, 周扬, 陈丽诗, 宁奕飞, 方正美, 潘铁英, 张德祥. 淖毛湖煤直接液化中沥青质反应性与油产率[J]. 化学工程,2021,49(5):69−73+78. doi: 10.3969/j.issn.1005-9954.2021.05.014

    ZHANG Yuan-yuan, ZHOU Yang, CHEN Li-shi, NING Yi-fei, FANG Zheng-mei, PAN Tie-ying, ZHANG De-xiang. Asphaltene reactivity and oil yield in direct liquefaction of Nuomaohu coal[J]. Chem Eng,2021,49(5):69−73+78. doi: 10.3969/j.issn.1005-9954.2021.05.014
    [17]
    HAO P, BAI Z Q, Hou R R, XU J L, BAI J, GUO Z X, KONG L X, LI W. Effect of solvent and atmosphere on product distribution, hydrogen consumption and coal structural change during preheating stage in direct coal liquefaction[J]. Fuel,2018,211:783−788. doi: 10.1016/j.fuel.2017.09.122
    [18]
    SHEN T, WANG Y J, LIU Q Y, LIU J P, LIU Z Y. A comparative study on direct liquefaction of two coals and hydrogen efficiency to the main products[J]. Fuel Process Technol,2021,217(15):106822.
    [19]
    张晓静. 煤炭直接液化溶剂的研究[J]. 洁净煤技术,2011,17(4):26−29. doi: 10.3969/j.issn.1006-6772.2011.04.010

    ZHANG Xiao-jing. Study on solvents for direct coal liquefaction[J]. Clean Coal Technol,2011,17(4):26−29. doi: 10.3969/j.issn.1006-6772.2011.04.010
    [20]
    郝盼. 油煤浆预热阶段溶剂与煤相互作用及其对液化过程的影响[D]. 太原: 中国科学院山西煤炭化学研究所, 2018.

    Hao Pan. Interaction between coal and solvent during preheating stage of direct coal liquefaction and its effects on coal conversion[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2018.
    [21]
    许俊丽. 煤直接液化残渣与低阶煤共热解特性及交互作用机制[D]. 太原: 中国科学院山西煤炭化学研究所, 2018.

    Xu Jun-li. Co-pyrolysis characteristics of direct coal liquefaction residue with low-rank coals and their interactive mechanism[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2018.
    [22]
    颜井冲. 褐煤温和加氢液化和残渣气化反应性研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2015.

    YAN Jing-chong. Mild hydroliquefaction of brown coal and gasification reactivity of its residues[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2015.
    [23]
    ZUO P, QU S, SHEN W. Asphaltenes: Separations, structural analysis and applications[J]. J Energy Chem,2019,34:186−207. doi: 10.1016/j.jechem.2018.10.004
    [24]
    蔺华林, 李克健, 章序文, 王洪学, 程时富. 煤液化沥青分析表征及结构模型[J]. 燃料化学学报,2014,42(7):779−784.

    LIN Hua-lin, LI Ke-jian, ZHANG Xu-wen, WANG Hong-xue, CHENG Shi-fu. Analysis and structural model of coal liquefaction asphaltene[J]. J Fuel Chem Technol,2014,42(7):779−784.
    [25]
    谷小会, 史士东, 周铭. 神华煤直接液化残渣中沥青烯组分的分子结构研究[J]. 煤炭学报,2006,31(6):785−789. doi: 10.3321/j.issn:0253-9993.2006.06.019

    GU Xiao-hui, SHI Shi-dong, ZHOU Ming. Study on the molecular structure of asphaltene fraction from the Shenhua coal direct liquefaction residue[J]. J China Coal Soc,2006,31(6):785−789. doi: 10.3321/j.issn:0253-9993.2006.06.019
    [26]
    CHEN X Y, LIU L, ZHANG L Y, ZHAO Y, ZHANG Z, XIE X, QIU P H, CHEN G, PEI J T. Thermogravimetric analysis and kinetics of the co-pyrolysis of coal blends with corn stalks[J]. Thermochim Acta,2018,659:59−65. doi: 10.1016/j.tca.2017.11.005
    [27]
    冉娜妮, 郭艳玲, 高峰, 何宏伟. 煤油共液化残渣制备中间相沥青及其表征[J]. 太原理工大学学报,2015,46(5):483−488.

    RAN Na-ni, GUO Yan-ling, GAO Feng, HE Hong-wei. Preparation and characterization of mesophase pitch from coal and oil slurry coliquefaction residue[J]. J Taiyuan Univ Technol,2015,46(5):483−488.
    [28]
    FENG Z H, BAI Z Q, ZHENG H Y, ZHENG K W, HOU R R, GUO Z X, KONG L X, BAI J, LI W. Study on the pyrolysis characteristic of mild liquefaction solid product of Hami coal and CO2 gasification of its char[J]. Fuel,2019,253:1034−1041. doi: 10.1016/j.fuel.2019.05.084
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (401) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return