Volume 50 Issue 9
Oct.  2022
Turn off MathJax
Article Contents
XU Shi-sen, ZHOU Bi-mao, WANG Xiao-xiao, LI Xiao-yu, LIU Gang, REN Yong-qiang, TAN Hou-zhang. Study on the variation of pore structure parameter of coal char at high temperature and its effect on gasification rate[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1116-1125. doi: 10.19906/j.cnki.JFCT.2022024
Citation: XU Shi-sen, ZHOU Bi-mao, WANG Xiao-xiao, LI Xiao-yu, LIU Gang, REN Yong-qiang, TAN Hou-zhang. Study on the variation of pore structure parameter of coal char at high temperature and its effect on gasification rate[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1116-1125. doi: 10.19906/j.cnki.JFCT.2022024

Study on the variation of pore structure parameter of coal char at high temperature and its effect on gasification rate

doi: 10.19906/j.cnki.JFCT.2022024
Funds:  The project was supported by Huaneng Group Science and Technology Project (HNKJ20-H57) and National key R & D Program (2017YFB0601900).
  • Received Date: 2022-02-15
  • Accepted Date: 2022-03-28
  • Rev Recd Date: 2022-03-27
  • Available Online: 2022-04-20
  • Publish Date: 2022-10-21
  • In this paper, the variation of pore structure of three typical coal chars with the gasification temperature and its effect on subsequent gasification reaction were studied by means of drop tube furnace (DTF) and thermogravimetric analyzer (TG). The results show that the pore structure parameter of coal char increases with the increase of temperature, which characterizes the shrinkage and closure of pores at high temperature. The local decrease of pore structure parameter near the ash melting point indicates the blockage and cover of pore structure caused by ash melting at high temperature. The growth ratio is defined as the ratio of the difference between the maximum gasification reaction rate and the initial reaction rate to the initial reaction rate. When the pore structure parameter is greater than 2, there is a linear relationship between the growth ratio and the pore structure parameter, and the growth ratio increases with the increase of the pore structure parameter. When the pore structure parameter is less than 2, the relationship between the growth ratio and the pore structure parameter is not obvious. The experimental results also show that the high content of alkali metals has a great effect on the gasification rate, which makes it difficult to accurately fit the experimental data curve with the existing model, and the value of the growth ratio can not be affected by it. It is feasible to couple the growth ratio to the gasification model to improve the robustness of the model.
  • loading
  • [1]
    LEE R P, SEIDL L G, HUANG Q L, MEYER B. An analysis of waste gasification and its contribution to China’s transition towardscarbon neutrality and zero waste cities[J]. J Fuel Chem Technol,2021,49(8):1057−1076. doi: 10.1016/S1872-5813(21)60093-2
    [2]
    REN Y Q, XU S S, LI G Y. Experimental study on the operational performance of an advanced two-stage entrained-flow coal gasifier[J]. Energy Fuels,2014,28(8):4911−4917. doi: 10.1021/ef500833f
    [3]
    LIU G, BENYON P, BENFELL K E, BRYANT G W, TATE A G, BOYD R K, HARRIS D J, WALL T F. The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled conditions[J]. Fuel,2000,79(6):617−626. doi: 10.1016/S0016-2361(99)00185-4
    [4]
    BHATIA S K, PERLMUTTER D D. A random pore model for fluid‐solid reactions: I. Isothermal, kinetic control[J]. AIChE J,1980,26(3):379−386. doi: 10.1002/aic.690260308
    [5]
    BAI Y H, LV P, YANG X H, GAO M Q, ZHU S H, YAN L J, LI F. Gasification of coal char in H2O/CO2 atmospheres: Evolution of surface morphology and pore structure[J]. Fuel,2018,218:236−246. doi: 10.1016/j.fuel.2017.11.105
    [6]
    TONG W, LIU Q C, YANG C, CAI Z L, WU H L, REN S. Effect of pore structure on CO2 gasification reactivity of biomass chars under high-temperature pyrolysis[J]. J Energy Inst,2020,93(3):962−976. doi: 10.1016/j.joei.2019.08.007
    [7]
    LIU W Z, NIU S W, TANG H B, ZHOU K. Pore structure evolution during lignite pyrolysis based on nuclear magnetic resonance[J]. Case Stud Therm Eng,2021,26:101−125.
    [8]
    KAWAKAMI M, TAGA H, TAKENAKA T, YOKOYAMA S. Micro pore structure and reaction rate of coke, wood charcoal and graphite with CO2[J]. ISIJ Int,2004,44(12):2018−2022. doi: 10.2355/isijinternational.44.2018
    [9]
    鞠付栋, 陈汉平, 杨海平, 王贤华, 张世红. 煤气化过程中焦炭的表面孔隙结构及其分形特征[J]. 中国电机工程学报,2010,30(8):9−14.

    JU Fu-dong, CHEN Han-ping, YANG Hai-ping, WANG Xian-hua, ZHANG Shi-hong. Surface pore structure and fractal characteristics of coke during coal gasification[J]. Proc CSEE,2010,30(8):9−14.
    [10]
    CAI Y D, LIU D M, LIU Z H, ZHOU Y F, CHE Y. Evolution of pore structure, submaceral composition and produced gases of two chinese coals during thermal treatment[J]. Fuel Process Technol,2017,156:298−309. doi: 10.1016/j.fuproc.2016.09.011
    [11]
    孙英峰, 赵毅鑫, 王欣, 彭磊, 孙强. 基于同步辐射装置定量表征煤孔隙结构非均质性和各向异性[J]. 石油勘探与开发,2019,46(6):1128−1137. doi: 10.11698/PED.2019.06.10

    SUN Ying-feng, ZHAO Yi-xin, WANG Xin, PENG Lei, SUN Qiang. Heterogeneity and anisotropy of pore structure of coal based on synchrotron radiation device[J]. Petrol Explor Dev,2019,46(6):1128−1137. doi: 10.11698/PED.2019.06.10
    [12]
    李贵友, 肖博. 基于SEM图像的煤样孔隙结构分形特征[C]//北京力学会第26届学术年会论文集. 2020.

    LI Guiyou, XIAO Bo. Fractal characteristics of pore structure of coal samples based on SEM images [C]//Proceedings of the 26th Annual meeting of Beijing Mechanical Society. 2020.
    [13]
    杨帆, 范晓雷, 周志杰, 刘海峰, 龚欣, 于遵宏. 随机孔模型应用于煤焦与CO2气化的动力学研究[J]. 燃料化学学报,2005,33(6):671−676. doi: 10.3969/j.issn.0253-2409.2005.06.006

    YANG Fan, FAN Xiao-lei, ZHOU Zhi-jie, LIU Hai-feng, GONG Xin, YU Zun-hong. Random pore model is applied to study the kinetics of coal char and CO2 gasification[J]. J Fuel Chem Technol,2005,33(6):671−676. doi: 10.3969/j.issn.0253-2409.2005.06.006
    [14]
    KAJITANI S, HARA S, MATSUDA H. Gasification rate analysis of coal char with a pressurized drop tube furnace[J]. Fuel,2002,81(5):539−546. doi: 10.1016/S0016-2361(01)00149-1
    [15]
    TREMEL A, SPLIETHOFF H. Gasification kinetics during entrained flow gasification – part I; devolatilisation and char deactivation[J]. Fuel,2013,103:663−671. doi: 10.1016/j.fuel.2012.09.014
    [16]
    TREMEL A, SPLIETHOFF H. Gasification kinetics during entrained flow gasification – part III: modelling and optimisation of entrained flow gasifiers[J]. Fuel,2013,107:170−182. doi: 10.1016/j.fuel.2013.01.062
    [17]
    于庆波, 李朋, 秦勤, 杜文亚. 煤焦—CO2高温气化反应特性的实验研究[J]. 东北大学学报,2009,30(12):1763−1766.

    YU Qing-bo, LI Peng, QIN Qin, DU Wen-ya. Experimental study on the characteristics of coal char–CO2 gasification at high temperature[J]. J Northeastern Univ,2009,30(12):1763−1766.
    [18]
    徐朝芬, 孙路石, 向军, 卢腾飞, 谢天. 烟煤煤焦的CO2气化反应[J]. 燃烧科学与技术,2010,16(4):347−352.

    XU Chao-fen, SUN Lu-shi, XIANG Jun, LU Teng-fei, XIE Tian. CO2 gasification of bituminous coal char[J]. Combust Sci Technol,2010,16(4):347−352.
    [19]
    KAJITANI S, SUZUKI N, ASHIZAWA M, HARA S. CO2 gasification rate analysis of coal char in entrained flow coal gasifier[J]. Fuel,2006,85(2):163−169. doi: 10.1016/j.fuel.2005.07.024
    [20]
    SONG Q S, WANG X H, GU C H, LI H W, HUO J P. Study on CO2 gasification kinetics of biomass char based on pore structure analysis: Theoretical modelling of structural parameter ψ in random pore model[J]. Int J Energy Res,2021,45(3):4429−4442. doi: 10.1002/er.6113
    [21]
    TAKARADA T, TAMAI Y, TOMITA A. Reactivities of 34 coals under steam gasification[J]. Fuel,1985,64(10):1438−1442. doi: 10.1016/0016-2361(85)90347-3
    [22]
    乌晓江, 张忠孝, 朴桂林, 小林信介, 森滋勝, 板谷義紀. 高灰熔点煤高温下煤焦CO2/水蒸气气化反应特性的实验研究[J]. 中国电机工程学报,2007,27(32):24−28. doi: 10.3321/j.issn:0258-8013.2007.32.005

    WU Xiao-jiang, ZHANG Zhong-xiao, PIAO Gui-lin, SHINSUKE K, TZU M, YOSHINORI K. Experimental study on CO2/steam gasification of coal char with high ash melting point at high temperature[J]. Proc CSEE,2007,27(32):24−28. doi: 10.3321/j.issn:0258-8013.2007.32.005
    [23]
    徐秀峰, 崔洪, 顾永达, 陈诵英, 吴东. 煤焦制备条件对其气化反应性的影响[J]. 燃料化学学报,1996,24(5):404−409.

    XU Xiu-feng, CUI Hong, GU Yong-da, CHEN Chun-ying, WU Dong. Effect of preparation conditions of coal char on its gasification reactivity[J]. J Fuel Chem Technol,1996,24(5):404−409.
    [24]
    LIU Y H, GUAN Y, ZHANG Y D, XIONG Y. Effects of atmosphere on mineral transformation of Zhundong coal during gasification in CO2/H2O conditions[J]. Fuel,2022,310:122428. doi: 10.1016/j.fuel.2021.122428
    [25]
    YUAN S, CHEN X L, LI J, WANG F C. CO2 gasification kinetics of biomass char derived from high-temperature rapid pyrolysis[J]. Energy Fuels,2011,25(5):2314−2321. doi: 10.1021/ef200051z
    [26]
    刘铁峰, 房倚天, 王洋. 不同彬县焦的水蒸气气化反应动力学研究[J]. 燃料化学学报,2009,37(2):161−165. doi: 10.3969/j.issn.0253-2409.2009.02.007

    LIU Tie-feng, FANG Yi-tian, WANG Yang. Study on steam gasification kinetics of different Binxian coke[J]. J Fuel Chem Technol,2009,37(2):161−165. doi: 10.3969/j.issn.0253-2409.2009.02.007
    [27]
    崔洪, 徐秀峰, 顾永达. 煤焦CO2气化的热重分析研究(I)等温热重研究[J]. 煤炭转化,1996,19(2):75−78.

    CUI Hong, XU Xiu-feng, GU Yong-da. Thermogravimetric analysis of CO2 gasification of coal char (I) isothermal thermogravimetric study[J]. Coal Convers,1996,19(2):75−78.
    [28]
    LIU H, LUO C H, SHIGERU K, SHIGEYUKI U, MASAHIRO K, TOSHINORI K. Kinetics of CO2/char gasification at elevated temperatures part I: Experimental results[J]. Fuel Process Technol,2006,87(9):775−781. doi: 10.1016/j.fuproc.2006.02.006
    [29]
    JEONG H J, SEO D K, HWANG J. CFD modeling for coal size effect on coal gasification in a two-stage commercial entrained-bed gasifier with an improved char gasification model[J]. Appl Energy,2014,123:29−36. doi: 10.1016/j.apenergy.2014.02.026
    [30]
    谷小虎, 曹敏, 王兰甫, 张爱民. 义马煤焦CO2气化反应性研究[J]. 煤炭转化,2009,32(3):6−8. doi: 10.3969/j.issn.1004-4248.2009.03.002

    GU Xiao-hu, CAO Min, WANG Lan-fu, ZHANG Ai-min. Study on CO2 gasification reactivity of Yima coal char[J]. Coal Convers,2009,32(3):6−8. doi: 10.3969/j.issn.1004-4248.2009.03.002
    [31]
    李绍锋, 吴诗勇. 高温下煤焦的碳微晶及孔结构的演变行为[J]. 燃料化学学报,2010,38(5):513−517. doi: 10.3969/j.issn.0253-2409.2010.05.001

    LI Shao-feng, WU Shi-yong. Evolution behavior of carbon microcrystals and pore structure of coal char at high temperature[J]. J Fuel Chem Technol,2010,38(5):513−517. doi: 10.3969/j.issn.0253-2409.2010.05.001
    [32]
    苏晓键. 发电厂燃用印尼煤常见问题与防范措施[J]. 机电信息,2020,(17):105−107. doi: 10.3969/j.issn.1671-0797.2020.17.058

    SU Xiao-jian. Common problems and preventive measures of burning Indonesian coal in power plant[J]. Mech Electr Infor,2020,(17):105−107. doi: 10.3969/j.issn.1671-0797.2020.17.058
    [33]
    乌晓江, 张忠孝, 周托, 陈玉爽, 朴桂林, 小林信介, 森滋勝, 板谷義紀. 煤焦-CO2/H2O气化反应过程中灰的熔融特性[J]. 中国电机工程学报,2010,30(14):36−43.

    WU Xiao-jiang, ZHANG Zhong-xiao, ZHOU Tuo, CHEN Yu-shuang, PIAO Gui-lin, SHINSUKE K, TZU M, YOSHINORI K. Melting characteristics of ash during coal char–CO2/H2O gasification reaction[J]. Proc CSEE,2010,30(14):36−43.
    [34]
    关昱, 张彦迪, 刘银河. CO2/H2O气氛下红沙泉煤中碱(土)金属的分布及其气化反应特性[J]. 燃料化学学报,2022,50(6):674−682.

    GUAN Yu, ZHANG Yan-di, LIU Yin-he. Distribution of alkaline (earth) metals and gasification reaction characteristics of HSQ coal under CO2/H2O atmosphere[J]. J Fuel Chem Technol,2022,50(6):674−682.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (326) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return