Volume 50 Issue 9
Oct.  2022
Turn off MathJax
Article Contents
YANG Yu-chen, YANG Ying-ju, LIU Jing, XIONG Bo. Copper modification of pyrite for CO2 electrochemical reduction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1167-1174. doi: 10.19906/j.cnki.JFCT.2022025
Citation: YANG Yu-chen, YANG Ying-ju, LIU Jing, XIONG Bo. Copper modification of pyrite for CO2 electrochemical reduction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1167-1174. doi: 10.19906/j.cnki.JFCT.2022025

Copper modification of pyrite for CO2 electrochemical reduction

doi: 10.19906/j.cnki.JFCT.2022025
Funds:  The project was supported by Fundamental Research Funds for the Central Universities (2019kfyRCPY021)
  • Received Date: 2021-12-28
  • Accepted Date: 2022-03-25
  • Rev Recd Date: 2022-03-24
  • Available Online: 2022-04-22
  • Publish Date: 2022-10-21
  • CO2 electrocatalytic reduction to synthesize highly value-added fuels provides a sustainable path for CO2 conversion and utilization. Nevertheless, the development of electrocatalysts with high catalytic activity and product selectivity remains a major challenge. In this work, copper-doped FeS2 catalysts (CuxFe1−xS2) were prepared for CO2 electrochemical reduction. The physicochemical properties of the catalysts were studied by XRD, XPS, SEM and other characterization analysis methods. Experimental results show that Cu doping can control the size of the catalyst nanosheets and inhibit the oxidation of FeS2 in the air. Cu0.33Fe0.67S2 shows better catalytic activity for CO2 electrocatalytic reduction than FeS2. In the potential range of (−1.5) − (−1.6) V vs. RHE, the total efficiency of carbon-containing products of CO2 electrocatalytic reduction is 50.8% and its current density is 23.8 mA/cm2, which increases by 71.2% compared with FeS2 catalyst. The Faradaic efficiency of Cu0.09Fe0.91S2 to produce C3H6 at −1.3 V vs. RHE is 21.8%, which is significantly higher than the value reported in the current literature. Thus, CuxFe1−xS2 is regarded as an excellent electrocatalyst for CO2 reduction.
  • loading
  • [1]
    YADAV D K, SINGH D K, GANESAN V. Recent strategy(ies) for the electrocatalytic reduction of CO2: Ni single-atom catalysts for the selective electrochemical formation of CO in aqueous electrolytes[J]. Curr Opin Electrochem,2020,22:87−93. doi: 10.1016/j.coelec.2020.04.008
    [2]
    ALBO J, ALVAREZ-GUERRA M, CASTAO P, IRABIEN A. Towards the electrochemical conversion of carbon dioxide into methanol[J]. ChemInform,2015,17(4):2304−2324.
    [3]
    HAN N, DING P, HE L, LI Y. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate[J]. Adv Energy Mater,2020,10(11):1902338. doi: 10.1002/aenm.201902338
    [4]
    REN D, ANG B S-H, YEO B S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts[J]. ACS Catal,2016,6(12):8239−8247. doi: 10.1021/acscatal.6b02162
    [5]
    WU M, ZHU C, WANG K, LI G, DONG X, SONG Y, XUE J, CHEN W, WEI W, SUN Y. Promotion of CO2 electrochemical reduction via Cu nanodendrites[J]. ACS Appl Mater Interfaces,2020,12(10):11562−11569. doi: 10.1021/acsami.9b21153
    [6]
    ZOU X, LIU M, WU J, AJAYAN P M, LI J, LIU B, YAKOBSON B I. How nitrogen-doped graphene quantum dots catalyze electroreduction of CO2 to hydrocarbons and oxygenates[J]. ACS Catal,2017,7(9):6245−6250. doi: 10.1021/acscatal.7b01839
    [7]
    ZHENG T, JIANG K, WANG H. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts[J]. Adv Mater,2018,30(48):1802066. doi: 10.1002/adma.201802066
    [8]
    YAN L, SU W, CAO X, ZHANG P, FAN Y. Copper-indium hybrid derived from indium-based metal-organic frameworks grown on oxidized copper foils promotes the efficient electroreduction of CO2 to CO[J]. Chem Eng J,2021,412(15):128718.
    [9]
    TU N N, DINH C T. Gas diffusion electrode design for electrochemical carbon dioxide reduction[J]. Chem Soc Rev,2020,49:7488−7504. doi: 10.1039/D0CS00230E
    [10]
    ZHAO Z, LU G. Computational screening of near-surface alloys for CO2 electroreduction[J]. ACS Catal,2018,8(5):3885−3894. doi: 10.1021/acscatal.7b03705
    [11]
    KIBRIA M G, EDWARDS J P, GABARDO C M E A. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design[J]. Adv Mater,2019,31(31):1807166. doi: 10.1002/adma.201807166
    [12]
    GENG P, ZHENG S, TANG H, ZHU R, ZHANG L, CAO S, XUE H, PANG H. Transition metal sulfides based on graphene for electrochemical energy storage[J]. Adv Energy Mater,2018,8(15):1703259. doi: 10.1002/aenm.201703259
    [13]
    YANG Y, LIU J, WU D, DING J, XIONG B. Two-dimensional pyrite supported transition metal for highly-efficient electrochemical CO2 reduction: A theoretical screening study[J]. Chem Eng J,2021,424:130541. doi: 10.1016/j.cej.2021.130541
    [14]
    GAO F Y, BAO R C, GAO M R E A. Electrochemical CO2-to-CO conversion: Electrocatalysts, electrolytes, and electrolyzers[J]. J Mater Chem A,2020,8(31):15458−15478. doi: 10.1039/D0TA03525D
    [15]
    XIONG B, LIU J, YANG Y, DING J, HUA Z. Tunable Cu-M bimetal catalysts enable syngas electrosynthesis from carbon dioxide[J]. NEW J CHEM,2022,46(3):1203−1209. doi: 10.1039/D1NJ04689F
    [16]
    VASILEFF A, ZHU Y, ZHI X, ZHAO Y, GE L, CHEN H M, ZHENG Y, QIAO S-Z. Electrochemical reduction of CO2 to ethane through stabilization of an ethoxy intermediate[J]. Angew Chem Int Ed,2020,59(44):19649−19653. doi: 10.1002/anie.202004846
    [17]
    HUANG Y, HANDOKO A D, HIRUNSIT P, YEO B S. Electrochemical reduction of CO2 using copper single-crystal surfaces: Effects of CO* coverage on the selective formation of ethylene[J]. ACS Catal,2017,7(3):1749−1756. doi: 10.1021/acscatal.6b03147
    [18]
    KAS R, KORTLEVER R, MILBRAT A, KOPER M T M, MUL G, BALTRUSAITIS J. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons[J]. Phys Chem Chem Phys,2014,16(24):12194−12201. doi: 10.1039/C4CP01520G
    [19]
    GAO D, ZEGKINOGLOU I, DIVINS N J, SCHOLTEN F, SINEV I, GROSSE P, ROLDAN CUENYA B. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols[J]. ACS Nano,2017,11(5):4825−4831. doi: 10.1021/acsnano.7b01257
    [20]
    LEE S, PARK G, LEE J. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol[J]. ACS Catal,2017,7(12):8594−8604. doi: 10.1021/acscatal.7b02822
    [21]
    MA M, DJANASHVILI K, SMITH W A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over cu nanowire arrays[J]. Angew Chem Int Ed,2016,55(23):6680−6684. doi: 10.1002/anie.201601282
    [22]
    HORI Y, TAKAHASHI I, KOGA O, HOSHI N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes[J]. J Mol Catal A-Chem,2003,199(1/2):39−47. doi: 10.1016/S1381-1169(03)00016-5
    [23]
    HANDOKO A D, ONG C W, HUANG Y, LEE Z G, LIN L, PANETTI G B, YEO B S. Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts[J]. J Phys Chem C,2016,120(36):20058−20067. doi: 10.1021/acs.jpcc.6b07128
    [24]
    LV J-J, JOUNY M, LUC W, ZHU W, ZHU J-J, JIAO F. A highly porous copper electrocatalyst for carbon dioxide reduction[J]. Adv Mater,2018,30(49):1803111. doi: 10.1002/adma.201803111
    [25]
    KIBRIA M G, DINH C-T, SEIFITOKALDANI A, DE LUNA P, BURDYNY T, QUINTERO-BERMUDEZ R, ROSS M B, BUSHUYEV O S, DE ARGUER F P G, YANG P, SINTON D, SARGEN E H. A surface reconstruction route to high productivity and selectivity in CO2 electroreduction toward C2+ hydrocarbons[J]. Adv Mater,2018,30(49):1804867. doi: 10.1002/adma.201804867
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (448) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return