Volume 50 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
ZHANG Teng, JIANG Zao, YANG Zheng-xin, XU Long-jun, LIU Cheng-lun. ZnxCd1−xS for photocatalytic degradation of landfill leachate and its hydrogen production activity[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1299-1306. doi: 10.19906/j.cnki.JFCT.2022027
Citation: ZHANG Teng, JIANG Zao, YANG Zheng-xin, XU Long-jun, LIU Cheng-lun. ZnxCd1−xS for photocatalytic degradation of landfill leachate and its hydrogen production activity[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1299-1306. doi: 10.19906/j.cnki.JFCT.2022027

ZnxCd1−xS for photocatalytic degradation of landfill leachate and its hydrogen production activity

doi: 10.19906/j.cnki.JFCT.2022027
Funds:  The project was supported by the Innovative Talents Training Program for Chongqing Primary and Secondary School Students (CY210120).
  • Received Date: 2022-02-16
  • Accepted Date: 2022-04-08
  • Rev Recd Date: 2022-04-01
  • Available Online: 2022-04-27
  • Publish Date: 2022-10-31
  • ZnxCd1−xS solid solution photocatalysts with high photocatalytic activity were prepared by the coprecipitation method at room temperature. The optimum process conditions of ZnxCd1−xS photocatalyst for degradation of landfill leachate (LFL) under simulated light and the hydrogen production rate for decomposition of degraded LFL were investigated, including the effects of Zn atom content, the amount of photocatalyst and illumination time on COD removal efficiency and hydrogen production performance. Results show that ZnxCd1−xS exhibits the highest photocatalytic activity with Zn∶Cd = 1∶1. Moreover, when the concentration of Zn0.5Cd0.5S is 1.0 g/L, and reaction time is 3 h, the COD removal efficiency of LFL can be up to 30.85% at room temperature. At the same time, Zn0.5Cd0.5S was applied to decompose degraded LFL to produce hydrogen. When the input amount of Zn0.5Cd0.5S is 0.6 g/L and illumination time is 3 h, the maximum hydrogen production is 1533 µmol, and the H2 production rate is 8312 µmol/(g·h). The hydrogen production obtained in this process is much higher than that of photocatalytic decomposition of pure water. After three recycles, the hydrogen production can still remain above 83% of the initial hydrogen production.
  • loading
  • [1]
    HUANG D L, TANG Z H, PENG Z W, LAI C, ZENG G M, ZHANG C, XU P, CHENG M, WAN J, WANG R Z. Fabrication of water-compatible molecularly imprinted polymer based on beta-cyclodextrin modified magnetic chitosan and its application for selective removal of bisphenol A from aqueous solution[J]. J Taiwan Inst Chem Eng,2017,77:113−121. doi: 10.1016/j.jtice.2017.04.030
    [2]
    XUE W, PENG Z, HUANG D, ZENG G M, WAN J, XU R, CHENG M, ZHANG C, JIANG D N, HU Z X. Nanoremediation of cadmium contaminated river sediments: Microbial response and organic carbon changes[J]. J Hazard Mater,2018,359:290−299. doi: 10.1016/j.jhazmat.2018.07.062
    [3]
    PENG S, PENG H, DING M, LI Y X. Efficient and stable photocatalytic hydrogen evolution from alkaline formaldehyde solution over Cd0.5Zn0.5S solid solution under visible light irradiation[J]. J Photonics Energy,2017,7(1):016503. doi: 10.1117/1.JPE.7.016503
    [4]
    刘占孟, 徐礼春, 赵杰峰, 李静, 胡锋平. 新型高级氧化技术处理垃圾渗滤液的研究进展[J]. 水处理技术,2018,44(1):7−12.

    LIU Zhan-meng, XU Li-chun, ZHAO Jie-feng, LI Jing, HU Feng-ping. Research progress of advanced oxidation treatment of landfill leachate[J]. Technol Water Treat,2018,44(1):7−12.
    [5]
    PAN H, LEI H, LIU X, WEI H B, LIU S F. Assessment on the leakage hazard of landfill leachate using three-dimensional excitation-emission fluorescence and parallel factor analysis method[J]. Waste Manage,2017,67:214−221. doi: 10.1016/j.wasman.2017.05.041
    [6]
    CHATURVEDI H, KAUSHAL P. Comparative study of different Biological Processes for no-segregated Municipal Solid Waste (MSW) leachate treatment[J]. Environ Technol Innovation,2018,9:134−139. doi: 10.1016/j.eti.2017.11.008
    [7]
    ELLEUCH L, MESSAOUD M, DJEBALI K, ATTAFI M, CHERNI Y, KASMI M, ELAOUD A, TRABELSI I, CHATTI A. A new insight into highly contaminated landfill leachate treatment using Kefir grains pre-treatment combined with Ag-doped TiO2 photocatalytic process[J]. J Hazard Mater,2020,382:121119. doi: 10.1016/j.jhazmat.2019.121119
    [8]
    ZHANG K J, XU H, YANG C G, GUO K C, YE C F, ZHOU Z P, SUN Y X, LI C L. A facile approach for the synthesis of ZnxCd1−xS/C nanocomposite to enhance photocatalytic activity[J]. Mater Sci Semicond Process,2020,107:104802. doi: 10.1016/j.mssp.2019.104802
    [9]
    WEI Z, LIU J, SHANGGUAN W. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production[J]. Chin J Catal,2020,41(10):1440−1450. doi: 10.1016/S1872-2067(19)63448-0
    [10]
    VALLE F D, ISHIKAVA A, DOMEN K, MANO JA V D L, SANCHEZ-SANCHEZ M C, GONZALEZ I D, HERRERAS S, MOTA N, RIVAS M E, GALVAN M A A. Influence of Zn concentration in the activity of Cd1−xZnxS solid solutions for water splitting under visible light[J]. Catal Today,2009,143(1/2):51−56. doi: 10.1016/j.cattod.2008.09.024
    [11]
    WAKERLEY D W, KUEHNEL M F, ORCHARD K L, LY K H, ROSSER T E, REISNER E. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst[J]. Nat Energy,2017,2(4):17021. doi: 10.1038/nenergy.2017.21
    [12]
    JI G, XU X, YANG H, ZHAO X, HE X, ZHAO M. Enhanced hydrogen production from sawdust decomposition using hybrid-functional Ni-CaO-Ca2SiO4 materials[J]. Environ Sci Technol,2017,51(19):11484−11492. doi: 10.1021/acs.est.7b03481
    [13]
    CHAN C C, CHANG C C, HSU C H, WENG Y C, CHEN K Y, LIN H H, HUANG W C, CHENG S F. Efficient and stable photocatalytic hydrogen production from water splitting over ZnxCd1−xS solid solutions under visible light irradiation[J]. Int J Hydrogen Energy,2014,39(4):1630−1639. doi: 10.1016/j.ijhydene.2013.11.059
    [14]
    JIANG Z, LEI Y, ZHANG Z, OUYANG Z. Nitrogen-doped graphene quantum dots decorated ZnxCd1−xS semiconductor with tunable photoelectric properties[J]. J Alloys Compd,2020,812:152096. doi: 10.1016/j.jallcom.2019.152096
    [15]
    WEI Z D, XU M Q, LIU J Y, GUO W Q, JIANG Z, SHANGGUAN W F. Simultaneous visible-light-induced hydrogen production enhancement and antibiotic wastewater degradation using MoS2@ZnxCd1−xS: Solid-solution-assisted photocatalysis[J]. Chin J Catal,2020,41(1):103−113. doi: 10.1016/S1872-2067(19)63479-0
    [16]
    QI S, WANG D, ZHAO Y, XU H. Core-shell g-C3N4@Zn0.5Cd0.5S heterojunction photocatalysts with high photocatalytic activity for the degradation of organic dyes[J]. J Mater Sci: Mater Electron,2019,30(5):5284−5296. doi: 10.1007/s10854-019-00828-w
    [17]
    SUN R, SONG J, ZHAO H, LI X. Control on the homogeneity and crystallinity of Zn0.5Cd0.5S nanocomposite by different reaction conditions with high photocatalytic activity for hydrogen production from water[J]. Mater Charact,2018,144:57−65. doi: 10.1016/j.matchar.2018.06.033
    [18]
    卢勇宏, 吴平霄, 黄俊毅, 陈理想, 朱能武, 党志. 碱化辅助水热法制备高活性Cd1−xZnxS可见光催化剂[J]. 高等学校化学学报,2015,36(8):1563−1569.

    LU Yong-hong, WU Ping-xiao, HUANG Jun-yi, CHEN Li-xiang, ZHU Neng-wu, DANG Zhi. Alkaline-assisted hydrothermal fabrication of Cd1−xZnxS with enhanced visible-light photocatalytic performance[J]. Chem J Chin Univ,2015,36(8):1563−1569.
    [19]
    ZHAO S, XU J, MAO M, LI L J, LI X H. NiCo2S4@Zn0.5Cd0.5S with direct Z-scheme heterojunction constructed by band structure adjustment of ZnxCd1−xS for efficient photocatalytic H2, evolution[J]. Appl Surf Sci,2020,528:147016. doi: 10.1016/j.apsusc.2020.147016
    [20]
    SHEN C C, LIU Y N, ZHOU X, GUO H L, ZHAO Z W, LIANG K, XU A W. Large improvement of visible-light photocatalytic H2 evolution based on cocatalyst-free Zn0.5Cd0.5S synthesized through a two-step process[J]. Catal Sci Technol,2017,7(4):961−967. doi: 10.1039/C6CY02382G
    [21]
    朱姗, 王晟, 刘福生, 李振, 张迪, 司高利. 固溶体ZnxCd1−xS光催化降解甲基橙水溶液[J]. 南京工业大学学报(自然科学版),2014,36(6):23−30+65.

    ZHU Shan, WANG Sheng, LIU Fu-sheng, LI Zhen, ZHANG Di, SI Gao-li. ZnxCd1−xS for degradation of methyl orange solution[J]. J Nanjing Technol Univ(Nat Sci),2014,36(6):23−30+65.
    [22]
    LIU M, HE Y, CHEN H, ZHAO H, LI J. Biomolecule-assisted hydrothermal synthesis of ZnxCd1−xS nanocrystals and their outstanding photocatalytic performance for hydrogen production[J]. Int J Hydrogen Energy,2017,42(33):20970−20978. doi: 10.1016/j.ijhydene.2017.06.196
    [23]
    LI Q, MENG H, ZHOU P, ZHENG Y Q, WANG J, YU J G, GONG J R. Zn1−xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2 production activity[J]. ACS Catal,2013,3(5):882−889. doi: 10.1021/cs4000975
    [24]
    LI Y, JIN Z, ZHANG L, FAN K. Controllable design of Zn-Ni-P on g-C3N4 for efficient photocatalytic hydrogen production[J]. Chin J Catal,2019,40(3):390−402. doi: 10.1016/S1872-2067(18)63173-0
    [25]
    罗永春, 李慷, 张国庆, 王文旭, 冯治棋. 溶胶凝胶法制备钙钛矿型LaFeO3薄膜及其在碱性水溶液中的电化学行为[J]. 兰州理工大学学报,2014,40(2):1−7.

    LUO Yong-chun, LI Kang, ZHANG Guo-qing, WANG Wen-xu, FENG Zhi-qi. Preparation of LaFeO3 film by sol-gel method and their electrochemical properties in alkaline solution[J]. J Lanzhou Univ Technol,2014,40(2):1−7.
    [26]
    JING C, LUO B, LIN H, CHEN S. Photocatalytic activity of novel AgBr/WO3 composite photocatalyst under visible light irradiation for methyl orange degradation[J]. J Hazard Mater,2011,190(1/3):700−706. doi: 10.1016/j.jhazmat.2011.03.112
    [27]
    KANSAL S K, SINGH M, SUD D. Studies on TiO2/ZnO photocatalyzed degradation of lignin[J]. J Hazard Mater,2008,153(1-2):412−417. doi: 10.1016/j.jhazmat.2007.08.091
    [28]
    LI W J, LI D Z, MENG S G, CHEN W, FU X Z, SHAO Y. Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the ZnxCd1−xS/TiO2 nanocomposites[J]. Environ Sci Technol,2011,45(7):2987−2993. doi: 10.1021/es103041f
    [29]
    GAO X, JI X, NGUYEN T T, GONG X, CHAI R, GUO M. A novel composite material with wood-based carbon quantum dots modified Bi2MoO6 hollow microspheres[J]. Vac,2019,164:256−264. doi: 10.1016/j.vacuum.2019.03.032
    [30]
    张正义, 张千, 楼紫阳, 刘伟, 朱宇楠, 袁春波, 于潇, 赵天涛. 催化臭氧氧化处理渗滤液RO浓液的氧化特性及光谱分析[J]. 化工学报,2021,72(10):5362−5371.

    ZHANG Zheng-yi, ZHANG Qian, LOU Zi-yang, LIU Wei, ZHU Yu-nan, YUAN Chun-bo, YU Xiao, ZHAO Tian-tao. Oxidation characteristics and spectral analysis of leachate reverse osmosis concentrate by catalytic ozonation[J]. J Chem Eng,2021,72(10):5362−5371.
    [31]
    李丹丹. 混凝-Fenton法处理垃圾渗滤液的研究[D]. 重庆: 重庆大学. 2009.

    LI Dan-dan. Study on treatment of leachate by combined coagulation-flocculation and different fenton oxidation method[D]. Chongqing: Chongqing University, 2009.
    [32]
    肖琳. 光催化污染物降解耦合光解水制氢[D]. 上海: 上海交通大学. 2008.

    XIAO Lin. Photocatalytic hydrogen production from water with simultaneous degradation of pollutant[D]. Shanghai: Shanghai Jiao Tong University, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (267) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return