Volume 50 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
SUN Jia-qi, MA Zi-zai, ZHOU Bing, YANG Jie, WANG Xiao-guang. Bimetallic nickel-cobalt oxalate as highly efficient electrocatalyst for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1278-1287. doi: 10.19906/j.cnki.JFCT.2022032
Citation: SUN Jia-qi, MA Zi-zai, ZHOU Bing, YANG Jie, WANG Xiao-guang. Bimetallic nickel-cobalt oxalate as highly efficient electrocatalyst for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1278-1287. doi: 10.19906/j.cnki.JFCT.2022032

Bimetallic nickel-cobalt oxalate as highly efficient electrocatalyst for oxygen evolution reaction

doi: 10.19906/j.cnki.JFCT.2022032
Funds:  The project was supported by the National Natural Science Foundation of China (21878201, 22008165) and the 7th Youth Talent Support Program of Shanxi Province.
  • Received Date: 2022-02-04
  • Accepted Date: 2022-04-07
  • Rev Recd Date: 2022-03-27
  • Available Online: 2022-04-28
  • Publish Date: 2022-10-31
  • Developing highly active and non-noble-metal electrocatalyst for oxygen evolution reaction (OER) is expected to accomplish efficient water splitting hydrogen production and promote the commercial utilization of hydrogen energy. We in-situ fabricated bimetallic NiC2O4-Co electrocatalyst on nickel foam (NF) by a facile one-step solvothermal method in this work. NiC2O4-Co1 self-supported electrocatalyst presents superb OER performance with a low overpotential of 278 mV at 10 mA/cm2 and a Tafel slope of 65 mV/dec, accompanied by excellent stability in 1 mol/L KOH electrolyte. The superior catalytic activity of bimetallic NiC2O4-Co electrocatalyst is attributed to optimized electronic structure, high specific surface area, rapid interfacial charge transfer and the synergistic effect between Ni sites and Co sites during OER process.
  • loading
  • [1]
    ZHANG K, ZOU R. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges[J]. Small,2021,17(37):2100129. doi: 10.1002/smll.202100129
    [2]
    WANG H, CHEN J, LIN Y, WANG X, LI J, LI Y, GAO L, ZHANG L, CHAO D, XIAO X, LEE J M. Electronic modulation of Non-van der waals 2D electrocatalysts for efficient energy conversion[J]. Adv Mater,2021,33(26):2008422. doi: 10.1002/adma.202008422
    [3]
    LIANG C, ZOU P, NAIRAN A, ZHANG Y, LIU J, LIU K, HU S, KANG F, FAN H J, YANG C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting[J]. Energy Environ Sci,2020,13(1):86−95. doi: 10.1039/C9EE02388G
    [4]
    万磊, 史春薇, 余宗宝, 武宏大, 肖伟, 耿忠兴, 任铁强, 杨占旭. WS2/C复合材料的制备及其电催化析氢性能研究[J]. 燃料化学学报,2021,49(9):1362−1370. doi: 10.1016/S1872-5813(21)60078-6

    WAN Lei, SHI Chun-wei, YU Zong-bao, WU Hong-da, XIAO Wei, GENG Zhong-xing, REN Tie-qiang, YANG Zhan-xu. Preparation of WS2/C composite material and its electrocatalytic hydrogen evolution performance[J]. J Fuel Chem Technol,2021,49(9):1362−1370. doi: 10.1016/S1872-5813(21)60078-6
    [5]
    CAI X, LIN R, XU J, LU Y. Construction and analysis of photovoltaic directly coupled conditions in PEM electrolyzer[J]. Int J Hydrogen Energy,2022,47(10):6494−6507. doi: 10.1016/j.ijhydene.2021.12.017
    [6]
    梁珂明, 姜彬, 黄焱, 鲁萌萌, 王秋静. 碳纳米纤维负载铁钴镍硼化物可控制备及其电催化析氢性能研究[J]. 燃料化学学报,2020,48(10):1270−1280. doi: 10.3969/j.issn.0253-2409.2020.10.014

    LIANG Ke-ming, JIANG Bin, HUANG Yan, LU Meng-meng, WANG Qiu-jing. Controllable synthesis of carbon nanofibers with plated FeCoNiB as high performance composite catalysts for electrocatalytic hydrogen evolution[J]. J Fuel Chem Technol,2020,48(10):1270−1280. doi: 10.3969/j.issn.0253-2409.2020.10.014
    [7]
    ZHOU J, HAN Z, WANG X, GAI H, CHEN Z, GUO T, HOU X, XU L, HU X, HUANG M, LEVCHENKO S V, JIANG H. Discovery of quantitative electronic structure‐OER activity relationship in metal‐organic framework electrocatalysts using an integrated theoretical‐experimental approach[J]. Adv Funct Mater,2021,31(33):2102066. doi: 10.1002/adfm.202102066
    [8]
    彭学刚, 李晓东, 崔丽萍, 高志华, 黄伟, 左志军. 高效析氧反应催化剂Fe-MIL-101的制备及性能研究[J]. 燃料化学学报,2021,49(9):1354−1361. doi: 10.1016/S1872-5813(21)60072-5

    PENG Xue-gang, LI Xiao-dong, CUI Li-ping, GAO Zhi-hua, HUANG Wei, ZUO Zhi-jun. Preparation and investigation of Fe-MIL-101 as efficient catalysts for oxygen evolution reaction[J]. J Fuel Chem Technol,2021,49(9):1354−1361. doi: 10.1016/S1872-5813(21)60072-5
    [9]
    LEMOINE K, GOHARI-BAJESTANI Z, MOURY R, TERRY A, GUIET A, GRENèCHE J M, HéMON-RIBAUD A, HEIDARY N, MAISONNEUVE V, KORNIENKO N, LHOSTE J. Amorphous iron-manganese oxyfluorides, promising catalysts for oxygen evolution reaction under acidic media[J]. ACS Appl Energy Mater,2021,4(2):1173−1181. doi: 10.1021/acsaem.0c02417
    [10]
    PARIS A R, BOCARSLY A B. High-efficiency conversion of CO2 to oxalate in water is possible using a Cr-Ga oxide electrocatalyst[J]. ACS Catal,2019,9(3):2324−2333. doi: 10.1021/acscatal.8b04327
    [11]
    MOTA-LIMA A. The electrified plasma/liquid Interface as a platform for highly efficient CO2 electroreduction to oxalate[J]. J Phys Chem C,2020,124(20):10907−10915. doi: 10.1021/acs.jpcc.0c00099
    [12]
    KIM J W, LEE J K, PHIHUSUT D, YI Y, LEE H J, LEE J. Self-organized one-dimensional cobalt compound nanostructures from CoC2O4 for superior oxygen evolution reaction[J]. J Phys Chem C,2013,117(45):23712−23715. doi: 10.1021/jp407156d
    [13]
    LIU X, JIANG J, AI L. Non-precious cobalt oxalate microstructures as highly efficient electrocatalysts for oxygen evolution reaction[J]. J Mater Chem A,2015,3(18):9707−9713. doi: 10.1039/C5TA01012H
    [14]
    CHEN H, LIANG X, LIU Y, AI X, ASEFA T, ZOU X. Active site engineering in porous electrocatalysts[J]. Adv Mater,2020,32(44):2002435. doi: 10.1002/adma.202002435
    [15]
    YU J, YU F, YUEN M F, WANG C. Two-dimensional layered double hydroxides as a platform for electrocatalytic oxygen evolution[J]. J Mater Chem A,2021,9(15):9389−9430. doi: 10.1039/D0TA11910E
    [16]
    HU H X, LEI X, LI S M, PENG R Z, WANG J L. Rapid mass production of iron nickel oxalate nanorods for efficient oxygen evolution reaction catalysis[J]. New J Chem,2022,46(1):328−333. doi: 10.1039/D1NJ04668C
    [17]
    GHOSH S, INTA H R, GANGULI S, TUDU G, KOPPISETTI H V, MAHALINGAM V. MoO2 as a propitious “Pore-Forming Additive” for boosting the water oxidation activity of cobalt oxalate microrods[J]. J Phys Chem C,2020,124(37):20010−20020. doi: 10.1021/acs.jpcc.0c05787
    [18]
    GHOSH S, JANA R, GANGULI S, INTA H R, TUDU G, KOPPISETTI H V, DATTA A, MAHALINGAM V. Nickel-cobalt oxalate as an efficient non-precious electrocatalyst for an improved alkaline oxygen evolution reaction[J]. Nanoscale Adv,2021,3(13):3770−3779. doi: 10.1039/D1NA00034A
    [19]
    YANG H, DRIESS M, MENEZES P W. Self‐supported electrocatalysts for practical water electrolysis[J]. Adv Energy Mater,2021,11(39):2102074. doi: 10.1002/aenm.202102074
    [20]
    SINGH M, NGUYEN T T, BALAMURUGAN J, KIM N H, LEE J H. Rational manipulation of 3D hierarchical oxygenated nickel tungsten selenide nanosheet as the efficient bifunctional electrocatalyst for overall water splitting[J]. Chem Eng J,2022,430:132888. doi: 10.1016/j.cej.2021.132888
    [21]
    KALE M B, BORSE R A, GOMAA ABDELKADER MOHAMED A, WANG Y. Electrocatalysts by electrodeposition: Recent advances, synthesis methods, and applications in energy conversion[J]. Adv Funct Mater,2021,31(25):2101313. doi: 10.1002/adfm.202101313
    [22]
    XIONG D, GU M, CHEN C, LU C, YI F Y, MA X. Rational design of bimetallic metal-organic framework composites and their derived sulfides with superior electrochemical performance to remarkably boost oxygen evolution and supercapacitors[J]. Chem Eng J,2021,404:127111. doi: 10.1016/j.cej.2020.127111
    [23]
    XU Y, LIU M, WANG S, REN K, WANG M, WANG Z, LI X, WANG L, WANG H. Integrating electrocatalytic hydrogen generation with selective oxidation of glycerol to formate over bifunctional nitrogen-doped carbon coated nickel-molybdenum-nitrogen nanowire arrays[J]. Appl Catal B: Environ,2021,298:120493. doi: 10.1016/j.apcatb.2021.120493
    [24]
    BU X, WEI R, CAI Z, QUAN Q, ZHANG H, WANG W, LI F, YIP S P, MENG Y, CHAN K S, WANG X, HO J C. More than physical support: The effect of nickel foam corrosion on electrocatalytic performance[J]. Appl Surf Sci,2021,538:147977. doi: 10.1016/j.apsusc.2020.147977
    [25]
    MENG T, LI Q, YAN M, WANG D, FAN L, LIU X, XING Z, YANG X. Electrochemically induced in-situ surface self-reconstruction on Ni, Fe, Zn ternary-metal hydroxides towards the oxygen-evolution performance[J]. Chem Eng J,2021,410:128331. doi: 10.1016/j.cej.2020.128331
    [26]
    TSAI F T, DENG Y T, PAO C W, CHEN J L, LEE J F, LAI K T, LIAW W F. The HER/OER mechanistic study of an FeCoNi-based electrocatalyst for alkaline water splitting[J]. J Mater Chem A,2020,8(19):9939−9950. doi: 10.1039/D0TA01877E
    [27]
    TAO L, HUANG M, GUO S, WANG Q, LI M, XIAO X, CAO G, SHAO Y, SHEN Y, FU Y, WANG M. Surface modification of NiCo2Te4 nanoclusters: a highly efficient electrocatalyst for overall water-splitting in neutral solution[J]. Appl Catal B: Environ,2019,254:424−431. doi: 10.1016/j.apcatb.2019.05.010
    [28]
    LEI C, ZHENG Q, CHENG F, HOU Y, YANG B, LI Z, WEN Z, LEI L, CHAI G, FENG X. High‐performance metal‐free nanosheets array electrocatalyst for oxygen evolution reaction in acid[J]. Adv Funct Mater,2020,30(31):2003000. doi: 10.1002/adfm.202003000
    [29]
    KIM C, LEE S, KIM S H, KWON I, PARK J, KIM S, LEE J H, PARK Y S, KIM Y. Promoting electrocatalytic overall water splitting by sulfur incorporation into CoFe-(oxy)hydroxide[J]. Nanoscale Adv,2021,3(22):6386−6394. doi: 10.1039/D1NA00486G
    [30]
    GAO X, YU Y, LIANG Q, PANG Y, MIAO L, LIU X, KOU Z, HE J, PENNYCOOK S J, MU S, WANG J. Surface nitridation of nickel-cobalt alloy nanocactoids raises the performance of water oxidation and splitting[J]. Appl Catal B: Environ,2020,270:118889. doi: 10.1016/j.apcatb.2020.118889
    [31]
    CAI Z, ZHOU D, WANG M, BAK S M, WU Y, WU Z, TIAN Y, XIONG X, LI Y, LIU W, SIAHROSTAMI S, KUANG Y, YANG X Q, DUAN H, FENG Z, WANG H, SUN X. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity[J]. Angew Chem Int Ed,2018,57(30):9392−9396. doi: 10.1002/anie.201804881
    [32]
    ZHANG Z, WANG C, MA X, LIU F, XIAO H, ZHANG J, LIN Z, HAO Z. Engineering ultrafine NiFe-LDH into self-supporting nanosheets: Separation-and-reunion strategy to expose additional edge sites for oxygen evolution[J]. Small,2021,17(47):2103785. doi: 10.1002/smll.202103785
    [33]
    JEUNG Y, JUNG H, KIM D, ROH H, LIM C, HAN J W, YONG K. 2D-structured V-doped Ni(Co, Fe) phosphides with enhanced charge transfer and reactive sites for highly efficient overall water splitting electrocatalysts[J]. J Mater Chem A,2021,9(20):12203−12213. doi: 10.1039/D1TA02149D
    [34]
    HU W, LIU Q, LV T, ZHOU F, ZHONG Y. Impact of interfacial CoOOH on OER catalytic activities and electrochemical behaviors of bimetallic CoxNi-LDH nanosheet catalysts[J]. Electrochim Acta,2021,381:138276−138286. doi: 10.1016/j.electacta.2021.138276
    [35]
    YIN Z, SUN Y, JIANG Y, YAN F, ZHU C, CHEN Y. Hierarchical cobalt-doped molybdenum-nickel nitride nanowires as multifunctional electrocatalysts[J]. ACS Appl Mater Interfaces,2019,11(31):27751−27759. doi: 10.1021/acsami.9b06543
    [36]
    ZHANG J, QIAN B, SUN S, TAO S, CHU W, WU D, SONG L. Ultrafine Co3O4 nanoparticles within nitrogen-doped carbon matrix Derived from metal-organic complex for boosting lithium storage and oxygen evolution reaction[J]. Small,2019,15(46):1904260. doi: 10.1002/smll.201904260
    [37]
    BAI Z, WANG P, CHEN X, CHEN P, LIANG C. In situ surface dealumination of intermetallic NiFe aluminides electrocatalysts for enhancing the oxygen evolution[J]. Int J Hydrog Energy,2021,46(7):5323−5331. doi: 10.1016/j.ijhydene.2020.11.062
    [38]
    HUANG L, WU H, LIU H, ZHANG Y. Phosphorous doped cobalt-iron sulfide/carbon nanotube as active and robust electrocatalysts for water splitting[J]. Electrochim Acta,2019,318:892−900. doi: 10.1016/j.electacta.2019.06.096
    [39]
    CHEN T, QIAN M, TONG X, LIAO W, FU Y, DAI H, YANG Q. Nanosheet self-assembled NiCoP microflowers as efficient bifunctional catalysts (HER and OER) in alkaline medium[J]. Int J Hydrog Energy,2021,46(58):29889−29895. doi: 10.1016/j.ijhydene.2021.06.121
    [40]
    AO K, LI D, YAO Y, LV P, CAI Y, WEI Q. Fe-doped Co9S8 nanosheets on carbon fiber cloth as pH-universal freestanding electrocatalysts for efficient hydrogen evolution[J]. Electrochim Acta,2018,264:157−165. doi: 10.1016/j.electacta.2018.01.080
    [41]
    RAJENDIRAN R, MUTHUCHAMY N, PARK K H, LI O L, KIM H J, PRABAKAR K. Self-assembled 3D hierarchical MnCO3/NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions[J]. J Colloid Interface Sci,2020,566:224−233. doi: 10.1016/j.jcis.2020.01.086
    [42]
    YAO N, FAN Z, XIA Z, WU F, ZHAO P, CHENG G, LUO W. Constructing the CoO/Co4N heterostructure with an optimized electronic structure to boost alkaline hydrogen evolution electrocatalysis[J]. J Mater Chem A,2021,9(34):18208−18212. doi: 10.1039/D1TA04691H
    [43]
    QIN Q, CHEN L, WEI T, LIU X. MoS2/NiS yolk-shell microsphere-based electrodes for overall water splitting and asymmetric supercapacitor[J]. Small,2019,15(29):1803639. doi: 10.1002/smll.201803639
    [44]
    REIKOWSKI F, MAROUN F, PACHECO I, WIEGMANN T, ALLONGUE P, STETTNER J, MAGNUSSEN O M. Operando surface X-ray diffraction studies of structurally defined Co3O4 and CoOOH thin films during oxygen evolution[J]. ACS Catal,2019,9(5):3811−3821. doi: 10.1021/acscatal.8b04823
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (824) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return