Volume 51 Issue 2
Jan.  2023
Turn off MathJax
Article Contents
WANG Yi-di, SUN You-wei, ZHOU Feng, MA Hui-xia, WANG Yan-juan, HU Shao-zheng, ZHANG Jian. Photocatalytic performance study of LaFeO3/CQDs-g-C3Nx catalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 215-224. doi: 10.19906/j.cnki.JFCT.2022042
Citation: WANG Yi-di, SUN You-wei, ZHOU Feng, MA Hui-xia, WANG Yan-juan, HU Shao-zheng, ZHANG Jian. Photocatalytic performance study of LaFeO3/CQDs-g-C3Nx catalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 215-224. doi: 10.19906/j.cnki.JFCT.2022042

Photocatalytic performance study of LaFeO3/CQDs-g-C3Nx catalysts

doi: 10.19906/j.cnki.JFCT.2022042
Funds:  The project was supported by General Program of Liaoning Provincial Department of Science and Technology((2021-MS-308)) and the Project of Liaoning Provincial Department of Education(L2020016)
  • Received Date: 2022-04-19
  • Accepted Date: 2022-05-16
  • Rev Recd Date: 2022-05-14
  • Available Online: 2022-06-09
  • Publish Date: 2023-01-18
  • In this experiment, a Z-scheme nitrogen-deficient graphite-phase carbon nitride (LaFeO3/CQDs-g-C3Nx) composite photocatalyst was prepared. The catalyst was characterized by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection (UV-Vis DRS), photoluminescence spectroscopy (PL), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results showed that the introduction of nitrogen defects and CQDs enhanced the migration efficiency of photogenerated carriers. The photocatalytic degradation rate of LaFeO3/CQDs-g-C3Nx composites for rhodamine B (RhB) was 3.98 times higher than that of pure g-C3N4, and had good photocatalytic stability. It also showed good degradation of antibiotics and other organic pollutants.
  • loading
  • [1]
    MIAN M M, LIU G. Recent progress in biochar-supported photocatalysts: Synthesis, role of biochar, and applications[J]. RSC Adv,2018,8(26):14237−14248. doi: 10.1039/C8RA02258E
    [2]
    WANG X, MAEDA K, THOMAS A, TAKANABE K, XIN G, CARLSSON J M, DOMEN K, ANTONIETTI M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat Mater,2009,8(1):76−80. doi: 10.1038/nmat2317
    [3]
    LUO B, SONG R, JING D. Significantly enhanced photocatalytic hydrogen generation over graphitic carbon nitride with carefully modified intralayer structures[J]. Chem Eng J,2018,332:499−507. doi: 10.1016/j.cej.2017.09.119
    [4]
    ZHONG Y, WANG Z, FENG J, YAN S, ZHANG H, LI Z, ZOU Z. Improvement in photocatalytic H2 evolution over g-C3N4 prepared from protonated melamine[J]. Appl Surf Sci,2014,295(10):253−259.
    [5]
    彭小明, 罗文栋, 胡锋平, 戴红玲, 祝泽兵. 石墨类氮化碳改性方法的研究进展[J]. 水处理技术,2019,45(12):1−6+12.

    PENG Xiao-ming, LUO Wen-dong, HU Feng-ping, DAI Hong-ling, ZHU Ze-bing. Progress in the study of graphite-based carbon nitride modification methods[J]. Technol Water Treat,2019,45(12):1−6+12.
    [6]
    ZHU Y, ZHONG X, JIA X, YAO J. Bimetallic Ni-Co nanoparticles confined within nitrogen defective carbon nitride nanotubes for enhanced photocatalytic hydrogen production[J]. Environ Res,2022,203:111844. doi: 10.1016/j.envres.2021.111844
    [7]
    YU H, SHI R, ZHAO Y, BIAN T, ZHAO Y, ZHOU C, WATERHOUSE G I N, WU L Z, TUNG C H, ZHANG T. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution[J]. Adv Mater,2017,29(16):1605148. doi: 10.1002/adma.201605148
    [8]
    LIN Y, YANG Y, GUO W, WANG L, ZHANG R, LIU Y, ZHAI Y. Preparation of double-vacancy modified carbon nitride to greatly improve the activity of photocatalytic hydrogen generation[J]. Appl Surf Sci,2021,560:150029. doi: 10.1016/j.apsusc.2021.150029
    [9]
    XING W, TU W, OU M, WU S, YIN S, WANG H, CHEN G, XU R. Anchoring active Pt2+/Pt0 hybrid nanodots on g-C3N4 nitrogen vacancies for photocatalytic H2 evolution[J]. ChemSusChem,2019,12(9):2029−2034. doi: 10.1002/cssc.201801431
    [10]
    LIU X, ZHANG Q, MA D. Advances in 2D/2D Z-scheme heterojunctions for photocatalytic applications[J]. Sol RRL,2020,5(2):2000397.
    [11]
    WANG P, CAO Y, ZHOU X, XU C, YAN Q. Facile construction of 3D hierarchical flake ball-shaped γ-AgI/Bi2WO6 Z-scheme heterojunction towards enhanced visible-light photocatalytic performance[J]. Appl Surf Sci,2020,531:147345. doi: 10.1016/j.apsusc.2020.147345
    [12]
    TIAN L, YANG X, CUI X, LIU Q, TANG H. Fabrication of dual direct Z-scheme g-C3N4/MoS2/Ag3PO4 photocatalyst and its oxygen evolution performance[J]. Appl Surf Sci,2019,463:9−17. doi: 10.1016/j.apsusc.2018.08.209
    [13]
    SHEN M, ZHAO Z, CHEN J, SU Y, WANG J, WANG X. Effects of calcium substitute in LaMnO3 perovskites for NO catalytic oxidation[J]. J Rare Earths,2013,31(2):119−123. doi: 10.1016/S1002-0721(12)60244-0
    [14]
    GAO K, LI S. Multi-modal TiO2-LaFeO3, composite films with high photocatalytic activity and hydrophilicity[J]. Appl Surf Sci,2012,258(17):6460−6464. doi: 10.1016/j.apsusc.2012.03.061
    [15]
    XU J, LIU C, NIU J, ZHU Y, ZANG B, XIE M, CHEN M. Synthesis of LaFeO3/Bi3NbO7 p-n heterojunction photocatalysts with enhanced visible-light-responsive activity for photocatalytic reduction of Cr(Ⅵ)[J]. J Alloys Compd,2020,815:152492. doi: 10.1016/j.jallcom.2019.152492
    [16]
    IERVOLINOA G, VAIANOA V, SANNINOA D, RIZZOB L, PALMAA V. Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3[J]. Appl Catal B: Environ,2017,207:182−194. doi: 10.1016/j.apcatb.2017.02.008
    [17]
    GARCIA-MUNOZ P, FRESNO F, IVANEZ J, ROBERT D, KELLER N. Activity enhancement pathways in LaFeO3@TiO2 heterojunction photocatalysts for visible and solar light driven degradation of myclobutanil pesticide in water[J]. J Hazard Mater,2020,400:123099. doi: 10.1016/j.jhazmat.2020.123099
    [18]
    XU Y, LIU J, GAO C, WANG E. Applications of carbon quantum dots in electrochemiluminescence: A mini review[J]. Electrochem commun,2014,48:151−154. doi: 10.1016/j.elecom.2014.08.032
    [19]
    KARIMI-NAZARABAD M, AHMADZADEH H, GOHARSHADI E K. Porous perovskite-lanthanum cobaltite as an efficient cocatalyst in photoelectrocatalytic water oxidation by bismuth doped g-C3N4[J]. Sol Energy,2021,227:426−437. doi: 10.1016/j.solener.2021.09.028
    [20]
    LI Y, ZHAO Y, CHENG H H, HU Y, SHI G Q, DAI L M, QU L T. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J]. J Am Chem Soc,2012,134(1):15−18. doi: 10.1021/ja206030c
    [21]
    WANG W, NI Y, XU Z. One-step uniformly hybrid carbon quantum dots with high-reactive TiO2 for photocatalytic application[J]. J Alloy Compd,2015,622:303−308. doi: 10.1016/j.jallcom.2014.10.076
    [22]
    WANG Y, LIU X, LIU J, HAN B, HU X, YANG F, XU Z, LI Y, JIA S, LI Z, ZHAO Y. Carbon quantum dot implanted graphite carbon nitride nanotubes: Excellent charge separation and enhanced photocatalytic hydrogen evolution[J]. Angew Chem Int Ed,2018,57(20):5765−5771. doi: 10.1002/anie.201802014
    [23]
    刘帅, 李学雷, 王烁天, 王彦娟, 苑兴洲, 张健, 梁飞雪, 胡绍争. 碳量子点修饰石墨相氮化碳光催化降解罗丹明B的研究[J]. 中国环境科学,2020,40(7):2909−2916. doi: 10.3969/j.issn.1000-6923.2020.07.014

    LIU Shuai, LI Xue-lei, WANG Shuo-tian, WANG Yan-juan, YUAN Xing-zhou, ZHANG Jian, LIANG Fei-xue, HU Shao-zheng. Photocatalytic degradation of rhodamine B by carbon quantum dot modified graphite phase carbon nitride[J]. China Environ Sci,2020,40(7):2909−2916. doi: 10.3969/j.issn.1000-6923.2020.07.014
    [24]
    刘帅, 李学雷, 王烁天, 李旭贺, 王彦娟, 苑兴洲, 张健, 封瑞江. CeO2改性WO3/g-C3N4光催化氧化脱硫性能[J]. 化工学报,2020,71(4):1618−1626.

    LIU Shuai, LI Xue-lei, WANG Shuo-tian, LI Xu-he, WANG Yan-juan, YUAN Xing-zhou, ZHANG Jian, FENG Rui-jiang. WO3/g-C3N4 modified by CeO2 and its oxidation and desulfurization properties[J]. CIESC J,2020,71(4):1618−1626.
    [25]
    SHEN Q, LI N, BIBI R, RICHARD N, LIU M, ZHOU J, JING D. Incorporating nitrogen defects into novel few-layer carbon nitride nanosheets for enhanced photocatalytic H2 production[J]. Appl Surf Sci,2020,529:147104. doi: 10.1016/j.apsusc.2020.147104
    [26]
    WANG R, WANG X, LI X, PEI L, GU X, ZHENG Z. Facile one-step synthesis of porous graphene-like g-C3N4 rich in nitrogen vacancies for enhanced H2 production from photocatalytic aqueous-phase reforming of methanol[J]. Int J Hydrog Energy,2021,46(1):197−208. doi: 10.1016/j.ijhydene.2020.09.156
    [27]
    LEI G, CAO Y, ZHAO W, SHEN D L, XIAO Y, JIANG L. Exfoliation of graphitic carbon nitride for enhanced oxidative desulfurization: a facile and general strategy[J]. ACS Sustainable Chem Eng,2019,7:4941−4950. doi: 10.1021/acssuschemeng.8b05553
    [28]
    WANG X, LI Y, ZHANG X, LI J, LI X, WANG C. Design and fabrication of NiS/LaFeO3 heterostructures for high efficient photodegradation of organic dyes[J]. Appl Surf Sci,2020,504:144363. doi: 10.1016/j.apsusc.2019.144363
    [29]
    WIRANWETCHAYAN O, PROMNOPAS S, PHADUNGDHITIDHADA S, PHURUANGRAT A, THONGTEM T, SINGIAI P, THONGTEM S. Characterization of perovskite LaFeO3 synthesized by microwave plasma method for photocatalytic applications[J]. Ceram Int,2019,45(4):4802−4809. doi: 10.1016/j.ceramint.2018.11.175
    [30]
    ZHU M, HAN M, ZHU C, HU L, HUANG H, LIU Y, KANG Z. Strong coupling effect at the interface of cobalt Cd phate-carbon dots boost photocatalytic water splitting[J]. J Colloid Interface Sci,2018,530:256−263. doi: 10.1016/j.jcis.2018.06.078
    [31]
    HUANG Y, LIU J, ZHAO C, JIA X, MA M, QIAN Y, YANG C, LIU K, TAN F, WANG Z, LI X, QU S, WANG Z. Facile synthesis of defect-modified thin-layered and porous g-C3N4 with synergetic improvement for photocatalytic H2 production[J]. ACS Appl Mater Interfaces,2020,12(47):52603−52614. doi: 10.1021/acsami.0c14262
    [32]
    YE Y, YANG H, WANG X, FENG W. Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts[J]. Mater Sci Semicond Process,2018,82:14−24. doi: 10.1016/j.mssp.2018.03.033
    [33]
    LIU T, WANG L, LU X, FAN J, CAI X, GAO B, MIAO R, WANG J, LV Y. Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: Adsorption, active species, and pathways[J]. RSC Adv,2017,7(20):12292−12300. doi: 10.1039/C7RA00199A
    [34]
    LIU J, FANG W, WEI Z, QIN Z, JIANG Z, SHANGGUAN W. Efficient photocatalytic hydrogen evolution on N-deficient g-C3N4 achieved by a molten salt post-treatment approach[J]. Appl Catal B: Environ,2018,238:465−470. doi: 10.1016/j.apcatb.2018.07.021
    [35]
    GE G, GUO X, SONG C, ZHAO Z. Reconstructing supramolecular aggregates to nitrogen-deficient g-C3N4 bunchy tubes with enhanced photocatalysis for H2 production[J]. ACS Appl Mater Interfaces,2018,10(22):18746−18753. doi: 10.1021/acsami.8b04227
    [36]
    QIU P, XU C, CHEN H, JIANG F, WANG X, LU R, ZHANG X. One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity[J]. Appl Catal B: Environ,2017,206:319−327. doi: 10.1016/j.apcatb.2017.01.058
    [37]
    KANG Y, YANG Y, YIN L C, KANG X, WANG L, LIU G, CHENG H M. Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis[J]. Adv Mater,2016,28(30):6471−6477. doi: 10.1002/adma.201601567
    [38]
    LI X, CHEN W, HE P, WANG T, LIU D, LI Y, LI Y, WANG E. Dawson-type polyoxometalate-based vacancies g-C3N4 composite–nanomaterials for efficient photocatalytic nitrogen fixation[J]. Inorg Chem Front,2019,6(11):3315−3326. doi: 10.1039/C9QI01093A
    [39]
    THIRUMALAIRAJAN S, GIRIJA K, HEBALKAR N Y, MANGALARAJ D, VISWANATHAN C, PONPANDIAN N. Shape evolution of perovskite LaFeO3 nanostructures: A systematic investigation of growth mechanism, properties and morphology dependent photocatalytic activities[J]. RSC Adv,2013,3(20):7549−7561. doi: 10.1039/c3ra00006k
    [40]
    SIGNORELLI A J, HAYES R G. X-ray photoelectron spectroscopy of various core levels of lanthanide ions: the roles of monopole excitation and electrostatic coupling[J]. Phys Rev B,1973,8(1):81−86. doi: 10.1103/PhysRevB.8.81
    [41]
    DENG G, CHEN Y, TAO M, WU C, SHEN X, YANG H, LIU M. Electrochemical properties and hydrogen storage mechanism of perovskite-type oxide LaFeO3 as a negative electrode for Ni/MH batteries[J]. Electrochim Acta,2010,55(3):1120−1124. doi: 10.1016/j.electacta.2009.09.078
    [42]
    TAFFA D H, DILLERT R, ULPE A C, BAUERFEIND K C L, BREDOW T, BAHNEMANN D W, WARK M. Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3-xO4) for water splitting: A mini-review[J]. J Photonics Energy,2016,7(1):012009. doi: 10.1117/1.JPE.7.012009
    [43]
    WANG H, GUAN J, LI J, LI X, MA C, HUO P, YAN Y. Fabricated g-C3N4/Ag/m-CeO2 composite photocatalyst for enhanced photoconversion of CO2[J]. Appl Surf Sci,2020,506:144931. doi: 10.1016/j.apsusc.2019.144931
    [44]
    MA H, SHI Z, LI Q, LI S. Preparation of graphitic carbon nitride with large specific surface area and outstanding N2 photofixation ability via a dissolve-regrowth process[J]. J Phys Chem Solids,2016,99:51−58. doi: 10.1016/j.jpcs.2016.08.008
    [45]
    LI X, LI Z, XING Z, SONG Z, YE B, WANG Z, WU Q. UV-LED/P25-based photocatalysis for effective degradation of isothiazolone biocide[J]. Front Environ Sci Eng,2020,15(5):85.
    [46]
    SHI H, CHEN G, ZHANG C, ZOU Z. Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel[J]. ACS Catal,2014,4(10):3637−3643. doi: 10.1021/cs500848f
    [47]
    TAN G, SHE L, LIU T, XU C, REN H, XIA A. Ultrasonic chemical synthesis of hybrid mpg-C3N4/BiPO4 heterostructured photocatalysts with improved visible light photocatalytic activity[J]. Appl Catal B: Environ,2017,207:120−133. doi: 10.1016/j.apcatb.2017.02.025
    [48]
    BASITH M, AHSAN R, ZARIN I, JALIL M. Enhanced photocatalytic dye degradation and hydrogen production ability of Bi25Fe40-rGO nanocomposite and mechanism insight[J]. Sci Rep,2018,8(1):1−11.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (258) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return