Volume 50 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
ZHANG Zhi-hao, XU Zhen-jun, REN Kun, WANG Jia-jun, FU Ting-jun, LI Zhong. Construction of highly dispersed active copper species on Y molecular sieve and performance of methanol oxidation carbonylation[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1601-1610. doi: 10.19906/j.cnki.JFCT.2022043
Citation: ZHANG Zhi-hao, XU Zhen-jun, REN Kun, WANG Jia-jun, FU Ting-jun, LI Zhong. Construction of highly dispersed active copper species on Y molecular sieve and performance of methanol oxidation carbonylation[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1601-1610. doi: 10.19906/j.cnki.JFCT.2022043

Construction of highly dispersed active copper species on Y molecular sieve and performance of methanol oxidation carbonylation

doi: 10.19906/j.cnki.JFCT.2022043
Funds:  The project was supported by Natural Science Foundation of China (U1510203) and Key Research and Development Project of Shanxi Province (201803D421011).
  • Received Date: 2022-04-14
  • Accepted Date: 2022-05-16
  • Rev Recd Date: 2022-05-16
  • Available Online: 2022-06-09
  • Publish Date: 2022-12-28
  • The control of copper species on the surface of CuY catalyst is the key to improve the performance of methanol oxidation carbonylation to dimethyl carbonate. In this work, a series of CuY catalysts with different copper loads were prepared by solution ion exchange method, and the N2-physisorption, XRD, TEM, H2-TPR, XPS, NH3-TPD and CH3OH-TPD were used to characterize the microstructure of the catalyst. The effects of Cu-ammonia solution concentration and activation temperature for structure and properties of CuY surface copper were investigated. The results indicated that although the porosity of the catalyst was reduced by increasing the concentration of solution, the amount of copper was significantly increased from 2.11% to 9.95%, and the high dispersion of copper species was maintained, with the particle size less than 4 nm. The high concentration of solution exchange reduced the weak acid sites on the surface and inhibited side reactions to improve the selectivity of DMC. The copper species of low loading catalysts were mainly ionic copper. Increasing the content of copper increased the content of ionic copper, but also significantly increases the amount of CuOx, which could rapidly improve the catalytic performance, methanol conversion and DMC yield reached 9.07% and 396.27 mg/(g·h), respectively. The activation at suitable temperature promoted the diffusion of copper species from the external surface to the internal pores, increasing the exchange of Cu species with NaY and weakening the adsorption strength of methanol, which was conducive to the improvement of catalytic performance. Compared with low loading catalysts, high loading catalysts could be activated to obtain more Cu+ and CuOx at low temperature, thus showing higher catalytic performance. The results of this work provided a theoretical basis for the design and preparation of high-performance CuY catalysts.
  • loading
  • [1]
    XIAO Z, YANG H, ZHANG H, CHEN T, WANG G. Transesterification of dimethyl carbonate and phenol to diphenyl carbonate with the bismuth compounds[J]. Chem Pap,2018,72(9):2347−2352. doi: 10.1007/s11696-018-0467-x
    [2]
    FANG W, ZHANG Z, YANG Z, ZHANG Y, XU F, LI C, AN H, SONG T, LUO Y, ZHANG S. One-pot synthesis of bio-based polycarbonates from dimethyl carbonate and isosorbide under metal-free condition[J]. Green Chem,2020,22(14):4550−4560. doi: 10.1039/D0GC01440K
    [3]
    JIN S, HUNT A J, CLARK J H, MCELROY C R. Acid-catalysed carboxymethylation, methylation and dehydration of alcohols and phenols with dimethyl carbonate under mild conditions[J]. Green Chem,2016,18(21):5839−44. doi: 10.1039/C6GC01826B
    [4]
    TAKEUCHI S, FUKUTSUKA T, MIYAZAKI K, ABE T. Electrochemical lithium ion intercalation into graphite electrode in propylene carbonate-based electrolytes with dimethyl carbonate and calcium salt[J]. J Power Sources,2013,238:65−68. doi: 10.1016/j.jpowsour.2013.02.084
    [5]
    LIANG Y, SU K, CAO L, GAO Y, LI Z. Study on the transesterification and mechanism of bisphenol A and dimethyl carbonate catalyzed by organotin oxide[J]. Chem Pap,2019,73(9):2171−2182. doi: 10.1007/s11696-019-00759-0
    [6]
    SHEN Y, SU Z, ZHAO Q, SHAN R, ZHU Z, CUI P, WANG Y. Molecular simulation and optimization of extractive distillation for separation of dimethyl carbonate and methanol[J]. Process Safety Environ Prot,2022,158:181−188. doi: 10.1016/j.psep.2021.11.055
    [7]
    WANG J, FU T, MENG F, ZHAO D, CHUANG S S C, LI Z. Highly active catalysis of methanol oxidative carbonylation over nano Cu2O supported on micropore-rich mesoporous carbon[J]. Appl Catal B: Environ,2022,303:120890. doi: 10.1016/j.apcatb.2021.120890
    [8]
    HAN M S, LEE B G, SUH I, KIM H S, AHN B S, HONG S I. Synthesis of dimethyl carbonate by vapor phase oxidative carbonylation of methanol over Cu-based catalysts - ScienceDirect[J]. J Mol Catal A: Chem,2001,170(1/2):225−234. doi: 10.1016/S1381-1169(01)00073-5
    [9]
    KING S T. Reaction mechanism of oxidative carbonylation of methanol to dimethyl carbonate in Cu-Y zeolite[J]. J Catal,1996,161(2):530−538. doi: 10.1006/jcat.1996.0215
    [10]
    KING S T. Oxidative carbonylation of methanol to dimethyl carbonate by solid-state ion-exchanged CuY catalysts[J]. Catal Today,1997,33(1):173−182.
    [11]
    ZHANG Y, BRIGGS D N, DE SMIT E, BELL A T. Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y, ZSM-5, and Mordenite[J]. J Catal,2007,251(2):443−452. doi: 10.1016/j.jcat.2007.07.018
    [12]
    ZHENG X, BELL A T. A theoretical investigation of dimethyl carbonate synthesis on Cu-Y zeolite[J]. J Phys Chem C,2008,112(13):5043−5047. doi: 10.1021/jp711415g
    [13]
    RICHTER M, FAIT M J G, ECKELT R, SCHREIR E, SCHNEIDER M, POHL M M, FRICKE R. Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure[J]. Appl Catal B: Environ,2007,73(3/4):269−281. doi: 10.1016/j.apcatb.2006.11.015
    [14]
    RICHTER M, FAIT M, ECKELT R, SCHNEIDER M, RADNIK J, HEIDEMANN D, FRICKE R. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure[J]. J Catal,2007,245(1):11−24. doi: 10.1016/j.jcat.2006.09.009
    [15]
    ENGELDINGER J, DOMKE C, RICHTER M, BENTRUP U. Elucidating the role of Cu species in the oxidative carbonylation of methanol to dimethyl carbonate on CuY: An in situ spectroscopic and catalytic study[J]. Appl Catal A: Gen,2010,382(2):303−311. doi: 10.1016/j.apcata.2010.05.009
    [16]
    ENGELDINGER J, RICHTER M, BENTRUP U. Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: an operando SSITKA/DRIFTS/MS study[J]. Phys Chem Chem Phys,2012,14(7):2183−2191. doi: 10.1039/C1CP23361K
    [17]
    王玉春, 郑华艳, 刘斌, 张国强, 李忠. 固相反应制备无氯CuY催化剂及其催化氧化羰基化——固相反应温度和铜负载量的影响[J]. 高等学校化学学报,2015,36(12):2540−2549. doi: 10.7503/cjcu20150285

    WANG Yu-chun, ZHENG Hua-yan, LIU Bin, ZHANG Guo-qiang, LI Zhong. Chloride-free CuY catalyst prepared by solid state reaction for oxidative carbonylation of methanol—effect of solid state reactive temperature and copper loading[J]. Chem J Chin Univ,2015,36(12):2540−2549. doi: 10.7503/cjcu20150285
    [18]
    王瑞玉, 李忠. CuNaY分子筛的制备及其催化甲醇氧化羰基化[J]. 燃料化学学报,2013,41(11):1361−1366.

    WANG Rui-yu, LI Zhong. Preparation and catalytic activity of CuNaY zeolite in oxidative carbonylation of methanol[J]. J Fuel Chem Technol,2013,41(11):1361−1366.
    [19]
    YAO J, HE Y, ZENG Y, FENG X, FAN J, KOMIYAMA S, YONG X, ZHANG W, ZHAO T, GUO Z, PENG X, YANG G, TSUBAKI N. Ammonia pools in zeolites for direct fabrication of catalytic centers[J]. Nat Commun,2022,13(1):931. doi: 10.1038/s41467-022-28613-0
    [20]
    ZHANG R, XU S, RAJA D, KHUSNI N B, LIU J, ZHANG J, ABDULRIDHA S, XIANG H, JIANG S, GUAN Y, JIAO Y, FAN X. On the effect of mesoporosity of FAU Y zeolites in the liquid-phase catalysis[J]. Microporous Mesoporous Mater,2019,278:297−306. doi: 10.1016/j.micromeso.2018.12.003
    [21]
    DOS SANTOS M B, VIANNA K C, PASTORE H O, ANDRADE H M C, MASCARENHAS A J S. Studies on the synthesis of ZSM-5 by interzeolite transformation from zeolite Y without using organic structure directing agents[J]. Microporous Mesoporous Mater,2020,306:110413. doi: 10.1016/j.micromeso.2020.110413
    [22]
    VAN AELST J, VERBOEKEND D, PHILIPPAERTS A, NUTTENS N, KURTTEPELI M, GOBECHIYA E, HAOUAS M, SREE S P, DENAYER J F M, MARTENS J A, KIRSCHHOCK C E A, TAULELLE F, BALS S, BARON G V, JACOBS P A, SELS B F. Catalyst design by NH4OH treatment of USY zeolite[J]. Adv Funct Mater,2015,25(46):7130−7144. doi: 10.1002/adfm.201502772
    [23]
    SHEN B, QIN Z, GAO X, LIN F, ZHOU S, SHEN W, WANG B, ZHAO H, LIU H. Desilication by alkaline treatment and increasing the silica to alumina ratio of zeolite Y[J]. Chin J Catal,2012,33(1):152−163. doi: 10.1016/S1872-2067(10)60290-2
    [24]
    HAN Z, ZHOU F, ZHAO J, LIU Y, MA H, WU G. Synthesis of hierarchical GaZSM-5 zeolites by a post-treatment method and their catalytic conversion of methanol to olefins[J]. Microporous Mesoporous Mater,2020,302:110194. doi: 10.1016/j.micromeso.2020.110194
    [25]
    ZHAO D, TU C, HU X, ZHANG N. Notable in situ surface transformation of Cu2O nanomaterials leads to dramatic activity enhancement for CO oxidation[J]. RSC Adv,2017,7(60):37596−37603. doi: 10.1039/C7RA05950G
    [26]
    ZHAO J, LIU Z, SUN D. TPO-TPD study of an activated carbon-supported copper catalyst-sorbent used for catalytic dry oxidation of phenol[J]. J Catal,2004,227(2):297−303. doi: 10.1016/j.jcat.2004.07.020
    [27]
    LYU Y, LIU Y, HE X, XU L, LIU X, YAN Z. The regulation of Si distribution and surface acidity of SAPO-11 molecular sieve[J]. Appl Surf Sci,2018,453:350−357. doi: 10.1016/j.apsusc.2018.05.106
    [28]
    JIANG Q, LIU Y, DINTZER T, LUO J, PARKHOMENKO K, ROGER A C. Tuning the highly dispersed metallic Cu species via manipulating Bronsted acid sites of mesoporous aluminosilicate support for CO2 hydrogenation reactions[J]. Appl Catal B: Environ,2020,269:118804. doi: 10.1016/j.apcatb.2020.118804
    [29]
    HAN F, YUAN M, MINE S, SUN H, CHEN H, TOYAO T, MATSUOKA M, ZHU K, ZHANG J, WANG W. Formation of highly active superoxide sites on CuO nanoclusters encapsulated in SAPO-34 for catalytic selective ammonia oxidation[J]. ACS Catal,2019,9(11):10398−10408. doi: 10.1021/acscatal.9b02975
    [30]
    WANG J, HUANG Y, YU T, ZHU S, SHEN M, LI W, WANG J. The migration of Cu species over Cu-SAPO-34 and its effect on NH3 oxidation at high temperature[J]. Catal Sci Technol,2014,4(9):3004−3012. doi: 10.1039/C4CY00451E
    [31]
    WANG Y, ZHENG H, LI Z. Effect of $ {\rm{NH}}_4^+ $ exchange on CuY catalyst for oxidative carbonylation of methanol[J]. Chin J Catal,2016,37(8):1403−1412. doi: 10.1016/S1872-2067(16)62490-7
    [32]
    HAO X, YI D, SHI L, MENG X. High performance of CuY zeolite for catalyzing acetylene carbonylation and the effect of copper valence states on catalyst[J]. Chem Eng J,2016,313:663−670.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (234) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return