Volume 50 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
NIU Ben, ZHANG Kai, ZHANG Jun-tao, HU Wen-chen, ZHONG Han-bin. Application progress of isotope tracer technique in the study of direct coal hydrogenation mechanism[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1535-1546. doi: 10.19906/j.cnki.JFCT.2022050
Citation: NIU Ben, ZHANG Kai, ZHANG Jun-tao, HU Wen-chen, ZHONG Han-bin. Application progress of isotope tracer technique in the study of direct coal hydrogenation mechanism[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1535-1546. doi: 10.19906/j.cnki.JFCT.2022050

Application progress of isotope tracer technique in the study of direct coal hydrogenation mechanism

doi: 10.19906/j.cnki.JFCT.2022050
Funds:  The project was supported by the National Natural Science Foundation of China (21908175),Key Research and Development Program of Shaanxi (2021GY-134) and Natural Science Basic Research Program of Shaanxi (2019JLM-1).
  • Received Date: 2022-05-26
  • Accepted Date: 2022-06-16
  • Rev Recd Date: 2022-06-15
  • Available Online: 2022-09-27
  • Publish Date: 2022-12-28
  • The direct coal hydrogenation is a clean and efficient utilization of low rank coal for preparing high quality liquid fuels and chemicals. The isotope tracer technology has been widely used in the mechanism of direct coal hydrogenation. The isotope tracer technology is briefly introduced and the progress of its application in the reaction mechanism of coal hydrogenation liquefaction, coal hydropyrolysis and other direct coal hydrogenation is reviewed in this paper.
  • loading
  • [1]
    田原宇, 谢克昌, 乔英云, 张永宁. 碳中和约束下的煤化工产业展望[J]. 中外能源,2022,27(5):17−23.

    TIAN Yuan-yu, XIE Ke-chang, QIAO Ying-yun, ZHANG Yong-ning. Prospects of coal chemical industry under the constraints of carbon neutrality[J]. Sino-Global Energy,2022,27(5):17−23.
    [2]
    谢克昌. 煤的结构与反应性 [M]. 北京: 科学出版社, 2002.

    XIE Ke-chang. Structure and Reactivity of Coal[M]. Beijing: Science Press, 2022.
    [3]
    刘振宇. 煤化学的前沿与挑战: 结构与反应[J]. 中国科学:化学,2014,44(9):1431−1439. doi: 10.1360/N032014-00159

    LIU Zhen-yu. Advancement in coal chemistry: Structure and reactivity[J]. Sci Sin: Chim,2014,44(9):1431−1439. doi: 10.1360/N032014-00159
    [4]
    MUCCIO Z, JACKSON G P. Isotope ratio mass spectrometry[J]. Analyst,2009,134(2):213−222. doi: 10.1039/B808232D
    [5]
    HARGREAVES J S, JACKSON S D, WEBB G. Isotopes in Heterogeneous Catalysis[M]//HUTCHINGS G J. Catalytic Science Series–Volume 4. London: Imperial College Press, 2006.
    [6]
    郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000.

    ZHENG Yong-fei, CHEN Jiang-feng. Stable Isotope Geochemistry[M]. Beijing: Science Press, 2000.
    [7]
    曹亚澄, 张金波, 温腾. 稳定同位素示踪技术与质谱分析–在土壤、生态、环境研究中的应用 [M]. 北京: 科学出版社, 2018.

    CAO Ya-cheng, ZHANG Jin-bo, WEN Teng. Stable Isotope Tracer Technique and Mass Spectrometry – Application in Soil, Ecology and Environment Research[M]. Beijing: Science Press, 2018.
    [8]
    史士东. 煤加氢液化工程学基础[M]. 北京: 化学工业出版社, 2012.

    SHI Shi-dong. Fundamentals of Coal Hydroliquefaction Engineering[M]. Beijing: Chemical Industry Press, 2012.
    [9]
    STOCK L M. Hydrogen-Transfer Reactions[M]//SCHLOSBERG R H. Chemistry of Coal Conversion. New York: Humana Press, 1985: 253–316.
    [10]
    CURRAN G P, STRUCK R T, GORIN E. Mechanism of hydrogen-transfer process to coal and coal extract[J]. Ind Eng Chem Process Des Dev,1967,6(2):166−173. doi: 10.1021/i260022a003
    [11]
    PETRAKIS L, GRANDY D W. Free radicals in coals and coal conversion. 2. Effect of liquefaction processing conditions on the formation and quenching of coal free radicals[J]. Fuel,1980,59(4):227−232. doi: 10.1016/0016-2361(80)90139-8
    [12]
    PETRAKIS L, GRANDY D W. Free radicals in coals and coal conversion. 4. Investigation of the free radicals in selected macerals upon liquefaction[J]. Fuel,1981,60(2):120−124. doi: 10.1016/0016-2361(81)90005-3
    [13]
    PETRAKIS L, GRANDY D W, RUBERTO R G. Free radicals in coal and coal conversions. 5. Methodology for the in-situ investigation of free radicals in coal depolymerization under SRC-II preheater/reactor conditions[J]. Fuel,1981,60(11):1013−1016. doi: 10.1016/0016-2361(81)90041-7
    [14]
    PETRAKIS L, GRANDY D. Free radicals in coal and coal conversions. 6. Effects of liquefaction process variables on the in-situ observation of free radicals[J]. Fuel,1981,60(11):1017−1021. doi: 10.1016/0016-2361(81)90042-9
    [15]
    PETRAKIS L, GRANDY D W, JONES G L. Free radicals in coal and coal conversions. 8. Experimental determination of conversion in hydroliquefaction[J]. Fuel,1983,62(6):665−670. doi: 10.1016/0016-2361(83)90305-8
    [16]
    PETRAKIS L, JONES G L, GRANDY D W. Free radicals in coal and coal conversions. 9. Statistical correlative models of the effect of process variables on hydroliquefaction products[J]. Fuel,1983,62(6):671−680. doi: 10.1016/0016-2361(83)90306-X
    [17]
    PETRAKIS L, JONES G L, GRANDY D W, BRUCE KING A. Free radicals in coal and coal conversions. 10. Kinetics and reaction pathways in hydroliquefaction[J]. Fuel,1983,62(6):681−689. doi: 10.1016/0016-2361(83)90307-1
    [18]
    HUANG R L, GOH S H, ONG S H A. The Chemistry of Free Radicals[M]. London: Hodder Arnold, 1974.
    [19]
    李文英, 李旺, 冯杰. 褐煤直接液化过程中存在的问题与思考[J]. 煤炭学报,2020,45(1):414−423. doi: 10.13225/j.cnki.jccs.YG19.1735

    LI Wen-ying, LI Wang, FENG Jie. An overview on issues for lignite direct liquefaction[J]. J China Coal Soc,2020,45(1):414−423. doi: 10.13225/j.cnki.jccs.YG19.1735
    [20]
    SCHWEIGHARDT F K, BOCKRATH B C, FRIEDEL R A, RETCOFSKY H L. Deuterium magnetic resonance spectrometry as a tracer tool in coal liquefaction processes[J]. Anal Chem,1976,48(8):1254−1255. doi: 10.1021/ac50002a047
    [21]
    FRANZ J A, CAMAIONI D M, SKIENS W E. Application of 13C, 2H, 1H NMR and GPC to the Study of Structural Evolution of Subbituminous Coal in Tetralin at 427 °C[M]//GORBATY M L, OUCHI K. Coal Structure. Washington, DC: American Chemical Society, 1981: 75–93.
    [22]
    FRANZ J A. 13C, 2H, 1H NMR and GPC study of structural evolution of a subbituminous coal during treatment with tetralin at 427 ℃[J]. Fuel,1979,58(6):405−412. doi: 10.1016/0016-2361(79)90080-2
    [23]
    FRANZ J A, CAMAIONI D M. Study of deuterium transfer, isotope effects and structural distributions of products of reactions of coals in deuterated tetralin using 2H and 13C FT–n. m. r. and solid-state 13C FT–n. m. r[J]. Fuel,1984,63(7):990−1001. doi: 10.1016/0016-2361(84)90324-7
    [24]
    KING H H, STOCK L M. Influence of Illinois No. 6 coal and coal-related compounds on the exchange reaction between diphenylmethane and perdeuteriotetralin[J]. Fuel,1980,59(6):447−449. doi: 10.1016/0016-2361(80)90204-5
    [25]
    KING H H, STOCK L M. Aspects of the chemistry of donor solvent coal dissolution. The hydrogen-deuterium exchange reactions of tetralin-d12 with Illinois No. 6 coal, coal products and related compounds[J]. Fuel,1982,61(3):257−264. doi: 10.1016/0016-2361(82)90122-3
    [26]
    RATTO J J, HEREDY L A, SKOWRONSKI R P. An Isotopic Study of the Role of a Donor Solvent in Coal Liquefaction[M]//WHITEHURST D D. Coal liquefaction Fundamentals. Washington, DC: American Chemical Society, 1980: 347–370.
    [27]
    SKOWRONSKI R P, RATTO J J, GOLDBERG I B, HEREDY L A. Hydrogen incorporation during coal liquefaction[J]. Fuel,1984,63(4):440−448. doi: 10.1016/0016-2361(84)90277-1
    [28]
    WILSON M A, VASSALLO A M, COLLIN P J, BATTS B D. Deuterium as a tracer in coal liquefaction Part 2. Non-catalytic studies[J]. Fuel Process Technol,1984,8(3):213−229. doi: 10.1016/0378-3820(84)90012-2
    [29]
    WILSON M A, COLLIN P J, BARRON P F, VASSALLO A M. Deuterium as a tracer in coal liquefaction part 1. The incorporation of deuterium into liquid products[J]. Fuel Process Technol,1982,5(3):281−298.
    [30]
    VASSALLO A M, FREDERICKS P M, WILSON M A. FTIR studies of deuterium incorporation into coal, associated mineral matter and hydrogenation residues[J]. Org Geochem,1983,5(2):75−85. doi: 10.1016/0146-6380(83)90005-0
    [31]
    COLLIN P J, WILSON M A. Use of INEPT and GASPE n. m. r. pulse sequences: Assignment of position of incorporation of deuterium into tetralin during coal hydrogenation[J]. Fuel,1983,62(11):1243−1246. doi: 10.1016/S0016-2361(83)80003-9
    [32]
    CRONAUER D C, MCNEIL R I, YOUNG D C, RUBERTO R G. Hydrogen/deuterium transfer in coal liquefaction[J]. Fuel,1982,61(7):610−619. doi: 10.1016/0016-2361(82)90005-9
    [33]
    CRONAUER D C, JEWELL D M, SHAH Y T, MODI R J. Mechanism and kinetics of selected hydrogen transfer reactions typical of coal liquefaction[J]. Ind Eng Chem Fundamen,1979,18(2):153−162. doi: 10.1021/i160070a011
    [34]
    BROWER K R. Effects of pressure and isotopic substitution on the rate of reaction of coal with Tetralin[J]. J Org Chem,1982,47(10):1889−1893. doi: 10.1021/jo00349a014
    [35]
    BROWER K R, PAJAK J. Evidence for concerted transfer of hydrogen from tetralin to coal based on kinetic isotope effects[J]. J Org Chem,1984,49(21):3970−3973. doi: 10.1021/jo00195a018
    [36]
    PAJAK J, BROWER K R. On the mechanism of hydrogen transfer from decalin to coal. Pressure effect and kinetic isotope effect[J]. Energy Fuels,1987,1(4):363−366. doi: 10.1021/ef00004a010
    [37]
    PAJAK J. Hydrogen transfer from tetralin to coal macerals. Kinetic isotope effects[J]. Fuel Process Technol,1989,23(1):39−45. doi: 10.1016/0378-3820(89)90042-8
    [38]
    PAJAK J. Kinetic isotope effects in hydrogen transfer reactions from tetralin to coal and its components[J]. J Mol Struct,1994, 321(1):143−146.
    [39]
    PAJAK J. Hydrogen transfer from decalin to coal macerals[J]. Fuel Process Technol,1991,27(2):203−213. doi: 10.1016/0378-3820(91)90101-H
    [40]
    DABBAGH H A, SHI B, DAVIS B H, HUGHES C G. Deuterium incorporation during coal liquefaction in donor and nondonor solvents[J]. Energy Fuels,1994,8(1):219−226. doi: 10.1021/ef00043a034
    [41]
    NOMURA M, MURATANI T, TAJIMA Y, MURATA S. Liquefaction of Japanese bituminous Akabira coal catalyzed by molten salts under D2 atmosphere[J]. Fuel Process Technol,1995,43(3):213−225. doi: 10.1016/0378-3820(95)00027-5
    [42]
    NIU B, JIN L, LI Y, SHI Z, HU H. Isotope analysis for understanding the hydrogen transfer mechanism in direct liquefaction of Bulianta coal[J]. Fuel,2017,203:82−89. doi: 10.1016/j.fuel.2017.04.079
    [43]
    牛犇. 煤直接液化中溶剂的作用及氢传递机理 [D]. 大连: 大连理工大学, 2017.

    NIU Ben. Role of solvents and hydrogen transfer mechanism in direct coal liquefaction[D]. Dalian: Dalian University of Technology, 2017.
    [44]
    KABE T, ISHIHARA A, QIAN E W, SUTRISNA I P, KABE Y. Coal and Coal-Related Compounds: Structures, Reactivity and Catalytic Reactions [M]//DELMON B, YATES J T, CENTI G. Studies in Surface Science and Catalysis, Volume 150. Amsterdam: Elsevier, 2004.
    [45]
    KABE T, NITOH O, FUNATSU E, YAMAMOTO K. Studies on hydrogen transfer mechanisms in coal liquefaction by means of 3H and 14C tracer techniques[J]. Fuel Process Technol,1986,14:91−101. doi: 10.1016/0378-3820(86)90011-1
    [46]
    KABE T, NITOH O, MARUMOTO M, KAWAKAMI A, YAMAMOTO K. Liquefaction mechanism of Wandoan coal using tritium and 14C tracer methods: 1. Liquefaction in 3H and 14C labelled solvent[J]. Fuel,1987,66(10):1321−1325. doi: 10.1016/0016-2361(87)90176-1
    [47]
    KABE T, NITOH O, FUNATSU E, YAMAMOTO K. Liquefaction mechanism of Wandoan coal using tritium and 14C tracer methods: 2. Liquefaction using 3H labelled gaseous hydrogen[J]. Fuel,1987,66(10):1326−1329. doi: 10.1016/0016-2361(87)90177-3
    [48]
    KABE T, NITOH O, KAWAKAMI A, OKUYAMA S, YAMAMOTO K. Liquefaction mechanism of Wandoan coal using tritium and 14C tracer methods: 3. Hydrocracking of Wandoan coal liquid[J]. Fuel,1989,68(2):178−184. doi: 10.1016/0016-2361(89)90320-7
    [49]
    KABE T, ISHIHARA A, DAITA Y. Tritium as a tracer in coal liquefaction. 1. Hydrogen mobility of tetralin under coal liquefaction conditions[J]. Ind Eng Chem Res,1991,30(8):1755−1759. doi: 10.1021/ie00056a011
    [50]
    KABE T, YAMAMOTO K, UEDA K, HORIMATSU T. Tritium as a tracer in coal liquefaction. Part II. Reactions of tritiated hydrogen molecules and datong coal[J]. Fuel Process Technol,1990,25(1):45−55. doi: 10.1016/0378-3820(90)90094-9
    [51]
    KABE T, KIMURA K, KAMEYAMA H, ISHIHARA A, YAMAMOTO K. Tritium as a tracer in coal liquefaction. 3. Reactions of morwell brown coal with tritiated hydrogen molecules[J]. Energy Fuels,1990,4(2):201−206. doi: 10.1021/ef00020a013
    [52]
    KABE T, HORIMATSU T, ISHIHARA A, KAMEYAMA H, YAMAMOTO K. Tritium as a tracer in coal liquefaction. 4. Hydrogen-exchange reactions between hydrogen in coals and tritiated hydrogen molecule[J]. Energy Fuels,1991,5(3):459−463. doi: 10.1021/ef00027a017
    [53]
    ISHIHARA A, MORITA S, KABE T. Elucidation of hydrogen transfer mechanisms in coal liquefaction using a tritium tracer method: Effects of solvents on hydrogen exchange reactions of coals with tritiated molecular hydrogen[J]. Fuel,1995,74(1):63−69. doi: 10.1016/0016-2361(94)P4332-V
    [54]
    ISHIHARA A, SUTRISNA I P, IFUKU M, QIAN E W, KABE T. Elucidation of hydrogen mobility in coal using a fixed bed flow reactor – Hydrogen transfer reaction between tritiated hydrogen, coal, and tetralin[J]. Energy Fuels,2002,16(6):1483−1489. doi: 10.1021/ef020078w
    [55]
    GODO M, KABE T. Novel aspects on coal liquefaction mechanism by the use of tritium and 35S tracer methods [M]//PAJARES J A, TASCóN J M D. Coal Science and Technology, Volume 24. Amsterdam; Elsevier. 1995: 1211–1214.
    [56]
    GODO M, ISHIHARA A, KABE T. Elucidation of mechanism of coal liquefaction using tritium and 35S tracer methods[J]. Energy Fuels,1997,11(3):724−729. doi: 10.1021/ef960149p
    [57]
    GODO M, SAITO M, SASAHARA J, ISHIHARA A, KABE T. Elucidation of coal liquefaction mechanism using a tritium tracer method. Effect of H2S and H2O on hydrogen exchange reaction of tetralin with tritiated molecular hydrogen[J]. Energy Fuels,1997,11(2):470−476. doi: 10.1021/ef960119m
    [58]
    GODO M, SAITO M, ISHIHARA A, KABE T. Elucidation of coal liquefaction mechanisms using a tritium tracer method: hydrogen exchange reaction of solvents with tritiated molecular hydrogen in the presence and absence of H2S[J]. Fuel,1998,77(9-10):947−952. doi: 10.1016/S0016-2361(97)00279-2
    [59]
    胡浩权. 煤直接转化制高品质液体燃料和化学品[J]. 化工进展,2016,35(12):4096−4098.

    HU Hao-quan. Coal direct conversion to high quality liquid fuels and chemicals[J]. Chem Ind Eng Prog,2016,35(12):4096−4098.
    [60]
    刘振宇. 煤快速热解制油技术问题的化学反应工程根源: 逆向传热与传质[J]. 化工学报,2016,67(1):1−5.

    LIU Zhen-yu. Origin of common problems in fast coal pyrolysis technologies for tar: the countercurrent flow of heat and volatiles[J]. CIESC J,2016,67(1):1−5.
    [61]
    GREENE M I. Engineering development of a short residence time, coal hydropyrolysis process[J]. Fuel Process Technol,1978,1(3):169−185. doi: 10.1016/0378-3820(78)90017-6
    [62]
    李保庆. 我国煤加氢热解研究 Ⅲ. 神府煤加氢、催化加氢及H2–CH4气氛下热解的研究[J]. 燃料化学学报,1995,23(1):192−197.

    LI Bao-qing. Hydrppyrolysis of Chinese coals Ⅲ. Catalytic and non-catalytic hydropyrolysis and pyrolysis under H2–CH4 of Shenfu bituminous coal[J]. J Fuel Chem Technol,1995,23(1):192−197.
    [63]
    FENG J, XUE X, LI X, LI W, GUO X, LIU K. Products analysis of Shendong long-flame coal hydropyrolysis with iron-based catalysts[J]. Fuel Process Technol,2015,130:96−100. doi: 10.1016/j.fuproc.2014.09.035
    [64]
    TAKARADA T, ONOYAMA Y, TAKAYAMA K, SAKASHITA T. Hydropyrolysis of coal in a pressurized powder-particle fluidized bed using several catalysts[J]. Catal Today,1997,39(1):127−136.
    [65]
    张君涛, 石润坤, 牛犇, 胡浩权, 梁生荣, 钟汉斌. CH4气氛在煤中低温热解阶段对焦油产率和品质的影响[J]. 煤炭学报,2021,46(1):292−299.

    ZHANG Jun-tao, SHI Run-kun, NIU Ben, HU Hao-quan, LIANG Sheng-rong, ZHONG Han-bin. Effect of CH4 atmosphere on tar yield and quality in coal pyrolysis at low-medium pyrolysis temperature[J]. J China Coal Soc,2021,46(1):292−299.
    [66]
    廖洪强, 孙成功, 李保庆, 刘泽常. 煤-焦炉气共热解特性的研究 Ⅰ. 固定床热解反应特性[J]. 燃料化学学报,1997,25(2):9−13.

    LIAO Hong-qiang, SUN Cheng-gong, LI Bao-qing, LIU Ze-chang. Coal pyrolysis with hydrogen-rich gasesⅠ. Coal copyrolysis with coke-oven gas[J]. J Fuel Chem Technol,1997,25(2):9−13.
    [67]
    CYPRèS R, FURFARI S. Low-temperature hydropyrolysis of coal under pressure of H2–CH4 mixtures[J]. Fuel,1982,61(8):721−724. doi: 10.1016/0016-2361(82)90246-0
    [68]
    SMITH G V, WILTOWSKI T, PHILLIPS J B. Conversion of coals and chars to gases and liquids by treatment with mixtures of methane and oxygen or nitric oxide[J]. Energy Fuels,1989,3:536. doi: 10.1021/ef00016a020
    [69]
    NIU B, LIU R, ZHANG J, SHI R, ZHONG H, WANG J. Effect of O2/CH4 atmosphere on tar production during coal pyrolysis[J]. J Anal Appl Pyrolysis,2021,159:105317. doi: 10.1016/j.jaap.2021.105317
    [70]
    靳立军, 李扬, 胡浩权. 甲烷活化与煤热解耦合过程提高焦油产率研究进展[J]. 化工学报,2017,68(10):3669−3677. doi: 10.11949/j.issn.0438-1157.20170465

    JIN Li-jun, LI Yang, HU Hao-quan. Research progress of integrated methane activation with coal pyrolysis for improving coal tar yield[J]. CIESC J,2017,68(10):3669−3677. doi: 10.11949/j.issn.0438-1157.20170465
    [71]
    LIU J, HU H, JIN L, WANG P, ZHU S. Integrated coal pyrolysis with CO2 reforming of methane over Ni/MgO catalyst for improving tar yield[J]. Fuel Process Technol,2010,91(4):419−423. doi: 10.1016/j.fuproc.2009.05.003
    [72]
    DONG C, JIN L, LI Y, ZHOU Y, ZOU L, HU H. Integrated process of coal pyrolysis with steam reforming of methane for improving the tar yield[J]. Energy Fuels,2014,28(12):7377−7384. doi: 10.1021/ef501796a
    [73]
    吴勇. 煤热解与乙烷水蒸气重整耦合过程中焦油的形成及机制 [D]. 大连: 大连理工大学, 2017.

    WU Yong. Formation of tar from an integrated process of coal pyrolysis with steam reforming of ethane[D]. Dalian: Dalian University of Technology, 2017.
    [74]
    姜会秀. 丙烷水蒸气重整与煤热解耦合提高焦油产率[D]. 大连: 大连理工大学, 2020.

    JIANG Hui-xiu. Integrated coal pyrolysis with steam reforming of propane to improve tar yield[D]. Dalian: Dalian University of Technology, 2020.
    [75]
    GAVALAS G R. Coal Pyrolysis [M]//ANDERSON L L. Coal Science and Technology. Amsterdam: Elsevier. 1982.
    [76]
    ANTHONY D B, HOWARD J B, HOTTEL H C, MEISSNER H P. Rapid devolatilization and hydrogasification of bituminous coal[J]. Fuel,1976,55(2):121−128. doi: 10.1016/0016-2361(76)90008-9
    [77]
    KERSHAW J R, BARRASS G. Deuterium studies of coal hydrogenation[J]. Fuel,1977,56(4):455. doi: 10.1016/0016-2361(77)90079-5
    [78]
    NOOR N S, GAINES A F, ABBOTT J M. Pyrolysis of Manvers coal in an atmosphere of deuterium[J]. Fuel,1986,65(1):67−74. doi: 10.1016/0016-2361(86)90144-4
    [79]
    SHI B, JI Y, GUTHRIE R D, DAVIS B H. Deuterium tracer studies of the mechanism of thermal and catalytic conversion of 1-[4-(2-phenylethyl)benzyl]naphthalene[J]. Energy Fuels,1994,8(6):1268−1275. doi: 10.1021/ef00048a015
    [80]
    GUTHRIE R D, RAMAKRISHNAN S, BRITT P F, BUCHANAN A C, DAVIS B H. Hydrothermolysis of a silica-immobilized diphenylethane[J]. Energy Fuels,1995,9(6):1097−1103. doi: 10.1021/ef00054a025
    [81]
    GUTHRIE R D, SHARIPOV R V, RAMAKRISHNAN S, SHI B, DAVIS B H. The reaction of 2, 2, 5, 5-tetramethyl-3, 4-diphenylhexane with D2. Stereochemical effects in a high-temperature reaction[J]. J Org Chem,1995,60(14):4504−4509. doi: 10.1021/jo00119a030
    [82]
    RAJAGOPAL V K, GUTHRIE R D, FIELDS T, DAVIS B H. Hydrogenation catalysis by thermally activated silica[J]. Catal Today,1996,31(1):57−63.
    [83]
    GUTHRIE R D. Thermolysis of organic compounds under H2 (D2)[J]. J Anal Appl Pyrolysis,2000,54(1):89−107.
    [84]
    WANG P, JIN L, LIU J, ZHU S, HU H. Isotope analysis for understanding the tar formation in the integrated process of coal pyrolysis with CO2 reforming of methane[J]. Energy Fuels,2010,24(8):4402−4407. doi: 10.1021/ef100637k
    [85]
    JIANG H, WANG M, LI Y, JIN L, HU H. Integrated coal pyrolysis with steam reforming of propane to improve tar yield[J]. J Anal Appl Pyrolysis,2020,147:104805. doi: 10.1016/j.jaap.2020.104805
    [86]
    WU Y, LI Y, JIN L, HU H. Integrated process of coal pyrolysis with steam reforming of ethane for improving the tar yield[J]. Energy Fuels,2018,32(12):12268−12276. doi: 10.1021/acs.energyfuels.8b02964
    [87]
    董婵. 煤热解与甲烷催化重整耦合过程研究 [D]. 大连: 大连理工大学, 2016.

    DONG Chan. Integrated process of coal pyrolysis with catalytic reforming of methane[D]. Dalian: Dalian University of Technology, 2016.
    [88]
    NIU B, NIU M, ZHANG J, LIU R, ZHONG H, HU H. Novel insight into the mechanism of coal hydropyrolysis using deuterium tracer method[J]. Fuel,2022,321:124109. doi: 10.1016/j.fuel.2022.124109
    [89]
    KABE T, SAITO M, QIAN W, ISHIHARA A. Elucidation of hydrogen mobility in coal using a tritium pulse tracer method. Hydrogen exchange reaction of coal with tritiated gaseous hydrogen[J]. Fuel,2000,79(3):311−316.
    [90]
    SUTRISNA I P, ISHIHARA A, QIAN W, KABE T. Elucidation of hydrogen behavior in coal using a tritium tracer method: Hydrogen transfer reaction of coal with tritiated gaseous hydrogen in a flow reactor[J]. Energy Fuels,2001,15(5):1129−1138. doi: 10.1021/ef010005x
    [91]
    ISHIHARA A, NISHIGORI D, OHASHI Y, KIM S, QIAN W, KABE T. Elucidation of hydrogen mobility in coal under reductive atmosphere using a tritium tracer method[J]. Fuel,2002,81(11):1409−1415.
    [92]
    SUTRISNA I P, ISHIHARA A, QIAN W, KABE T. Elucidation of hydrogen transfer behavior of coal with tritiated gaseous hydrogen in the absence and the presence of a catalyst using a fixed-bed reactor[J]. Fuel,2003,82(9):1103−1112. doi: 10.1016/S0016-2361(02)00415-5
    [93]
    ISHIHARA A, SUTRISNA I P, MIURA T, SAITO M, QIAN E W, KABE T. Elucidation of hydrogen transfer between coal and tritiated organic solvent[J]. Energy Fuels,2002,16(6):1490−1498. doi: 10.1021/ef020074r
    [94]
    ZHANG Z, LUSSIER M G, MILLER D J. Stability of hydrogen adsorbed on Saran char[J]. Carbon,2000,38(9):1289−1296. doi: 10.1016/S0008-6223(99)00263-8
    [95]
    WANG Q, ZHAO Y Q, ZHANG Y F, ZHANG T K, HE S Q, WEI Y Y. Isotope labeling to study the hydrogen transfer route during lignite modification in a subcritical D2O-CO system[J]. Energy Fuels,2020,34(5):5485−5496. doi: 10.1021/acs.energyfuels.9b04472
    [96]
    WANG L, PAN T, LIU P, ZHANG D. Hydrogen transfer route during hydrothermal treatment of lignite using the isotope tracer method and improving the pyrolysis tar yield[J]. Energy Fuels,2016,30(6):4562−4569. doi: 10.1021/acs.energyfuels.6b00281
    [97]
    KABE T, TAKAOKA H, ISHIHARA A, DAITA Y J C L. Estimation of hydrogen mobility in coal using a tritium tracer method. Hydrogen exchange reaction of coal with tritiated water[J]. Chem Lett,1990,19(9):1571−1574. doi: 10.1246/cl.1990.1571
    [98]
    ISHIHARA A, TAKAOKA H, NAKAJIMA E, IMAI Y, KABE T. Estimation of hydrogen mobility in coal using a tritium tracer method. Hydrogen exchange reactions of coals with tritiated water and molecular hydrogen[J]. Energy Fuels,1993,7(3):362−366. doi: 10.1021/ef00039a005
    [99]
    QIAN W, ISHIHARA A, FUJIMURA H, SAITO M, GODO M, KABE T. Elucidation of hydrogen mobility in coal using a tritium tracer method. 1. Hydrogen exchange reaction of coal with tritiated water[J]. Energy Fuels,1997,11(6):1288−1292. doi: 10.1021/ef970076p
    [100]
    ISHIHARA A, NISHIGORI D, SAITO M, QIAN W, KABE T. Hydrogen exchange reactions of coal with tritiated gaseous hydrogen and water. Effects of particle size of coal on hydrogen exchange[J]. Energy Fuels,2000,14(3):706−711. doi: 10.1021/ef990248d
    [101]
    ISHIHARA A, NISHIGORI D, SAITO M, STURISNA I P, QIAN W, KABE T. Elucidation of hydrogen mobility in functional groups of coals using tritium tracer methods[J]. Energy Fuels,2002,16(1):32−39. doi: 10.1021/ef010149b
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1624) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return