Volume 51 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
LI Jie, LI Hui. Density functional theory study of CO2 reduction on Cu13, Cu12Zr and Cu12Zn clusters[J]. Journal of Fuel Chemistry and Technology, 2023, 51(3): 314-319. doi: 10.19906/j.cnki.JFCT.2022051
Citation: LI Jie, LI Hui. Density functional theory study of CO2 reduction on Cu13, Cu12Zr and Cu12Zn clusters[J]. Journal of Fuel Chemistry and Technology, 2023, 51(3): 314-319. doi: 10.19906/j.cnki.JFCT.2022051

Density functional theory study of CO2 reduction on Cu13, Cu12Zr and Cu12Zn clusters

doi: 10.19906/j.cnki.JFCT.2022051
  • Received Date: 2022-05-05
  • Accepted Date: 2022-06-07
  • Rev Recd Date: 2022-06-07
  • Available Online: 2022-07-06
  • Publish Date: 2023-03-15
  • In this study, we used density functional theory to study the adsorption and activation capacity of Cu13, Cu12Zn, and Cu12Zr clusters for CO2 reduction. The calculated results showed that Cu12Zr enhanced the adsorption capacity of reactants and intermediates compared with Cu13 clusters, while Cu12Zn clusters decreased the adsorption capacity of reactants and intermediates. We calculated that the energy barriers for CO2 reduction to CO on Cu13, Cu12Zr, and Cu12Zn clusters were 0.65, 0.35 and 0.58 eV, respectively, and the energy barriers for CO2 plus H to generate HCOO were 0.87, 0.77 and 0.49 eV, while the energy barriers of CO2 hydrogenation to COOH were 1.67, 1.89 and 0.99 eV. The doping of Zn and Zr elements improved the CO2 catalytic reduction ability of the Cu clusters, which showed that the Cu12Zr clusters were favorable for the dissociation of CO2 to form CO, and the Cu12Zn clusters were favorable for the hydrogenation of CO2 to HCOO.
  • loading
  • [1]
    卢思宇, 杨海艳, 杨承广, 高鹏, 孙予罕. In2O3/SSZ-13催化CO2加氢高选择性合成液化石油气[J]. 燃料化学学报,2021,49(8):1132−1139. doi: 10.1016/S1872-5813(21)60057-9

    LU Si-yu, YANG Hai-yan, YANG Cheng-guang, GAO Peng, SUN Yu-han. Highly selective synthesis of LPG from CO2 hydrogenation over In2O3/SSZ-13 binfunctional catalyst[J]. J Fuel Chem Technol,2021,49(8):1132−1139. doi: 10.1016/S1872-5813(21)60057-9
    [2]
    HE J, JIN Z, GAN F, XIE L, GUO J, ZHANG S, JIA C Q, MA D, DAI Z, JIANG X. Liquefiable biomass-derived porous carbons and their applications in CO2 capture and conversion[J]. Green Chem,2022,24:3376−3415. doi: 10.1039/D1GC04746A
    [3]
    WEI J, YAO R, HAN Y, GE Q, SUN J. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons[J]. Chem Soc Rev,2021,50:10764−10805. doi: 10.1039/D1CS00260K
    [4]
    WANG G, CHEN J, DING Y, CAI P, YI L, LI Y, TU C, HOU Y, WEN Z, DAI L. Electrocatalysis for CO2 conversion: from fundamentals to value-added products[J]. Chem Soc Rev,2021,50(8):4993−5061. doi: 10.1039/D0CS00071J
    [5]
    GAUTAM S, DHARAMVIR K, GOEL N. CO2 adsorption and activation over medium sized Cun(n=7, 13 and 19) clusters: a density functional study[J]. Comput Theor Chem,2013,1009:8−16. doi: 10.1016/j.comptc.2012.12.010
    [6]
    PADAMA A A B, OCON J D, NAKANISHI H, KASAI H. Interaction of CO, O, and CO2 with Cu cluster supported on Cu(111): a density functional theory study[J]. J Phys Condens Matter,2019,31(41):415201. doi: 10.1088/1361-648X/ab2b66
    [7]
    ZHENG H, NARKHEDE N, HAN L, ZHANG H, LI Z. Methanol synthesis from CO2: A DFT investigation on Zn-promoted Cu catalyst[J]. Res Chem Intermediat,2020,46(3):1749−1769. doi: 10.1007/s11164-019-04061-2
    [8]
    JO D Y, LEE M W, HAM H C, LEE K Y. Role of the Zn atomic arrangements in enhancing the activity and stability of the kinked Cu(211) site in CH3OH production by CO2 hydrogenation and dissociation: First-principles microkinetic modeling study[J]. J Catal,2019,373:336−350. doi: 10.1016/j.jcat.2019.04.009
    [9]
    LI H, SHEN Y Y, DU H N, LI J, XU C X. Insight into the mechanisms of CO2 reduction to CHO over Zr-doped Cu nanoparticle[J]. Chem Phys,2021,540:111012. doi: 10.1016/j.chemphys.2020.111012
    [10]
    申艳阳. 铜锆合金纳米团簇催化性能的第一性原理研究[D]. 太原: 太原理工大学, 2021.

    SHEN Yan-yang. A first-principles study on the catalytic performance of copper-zirconium alloy nanoclusters[D]. Taiyuan: Taiyuan University of Technology, 2021.
    [11]
    DELLEY B. From molecules to solids with the DMol3 approach[J]. J Chem Phys,2000,113(18):7756−7764. doi: 10.1063/1.1316015
    [12]
    DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys,1990,92(1):508−517. doi: 10.1063/1.458452
    [13]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77(18):3865. doi: 10.1103/PhysRevLett.77.3865
    [14]
    PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B,1992,45(23):13244. doi: 10.1103/PhysRevB.45.13244
    [15]
    DELLEY B. Hardness conserving semilocal pseudopotentials[J]. Phys Rev B,2002,66(15):155125. doi: 10.1103/PhysRevB.66.155125
    [16]
    GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem,2006,27(15):1787−1799. doi: 10.1002/jcc.20495
    [17]
    HALGREN T A, LIPSCOMB W N. The synchronous-transit method for determining reaction pathways and locating molecular transition states[J]. Chem Phys Lett,1977,49(2):225−232. doi: 10.1016/0009-2614(77)80574-5
    [18]
    GOVIND N, PETERSEN M, FITZGERALD G, KING-SMITH D, ANDZELM J. A generalized synchronous transit method for transition state location[J]. Comp Mater Sci,2003,28(2):250−258. doi: 10.1016/S0927-0256(03)00111-3
    [19]
    OU L, CHEN S. DFT calculation analysis of oxygen reduction activity and stability of bimetallic catalysts with Pt-segregated surface[J]. Sci China Chem,2015,58(4):586−592. doi: 10.1007/s11426-015-5324-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2175) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return