Volume 51 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
WEN Wu-bin, ZHAO Lei, QIN Ning, LI Zhi-yao, LI Bei-bei, SHEN Kai, ZHANG Ya-ping. Adsorption of PbCl2 vapor in high temperature furnace by modified attapulgite: Experimental and theoretical calculations[J]. Journal of Fuel Chemistry and Technology, 2023, 51(3): 376-387. doi: 10.19906/j.cnki.JFCT.2022053
Citation: WEN Wu-bin, ZHAO Lei, QIN Ning, LI Zhi-yao, LI Bei-bei, SHEN Kai, ZHANG Ya-ping. Adsorption of PbCl2 vapor in high temperature furnace by modified attapulgite: Experimental and theoretical calculations[J]. Journal of Fuel Chemistry and Technology, 2023, 51(3): 376-387. doi: 10.19906/j.cnki.JFCT.2022053

Adsorption of PbCl2 vapor in high temperature furnace by modified attapulgite: Experimental and theoretical calculations

doi: 10.19906/j.cnki.JFCT.2022053
Funds:  The project was supported by the National Key R&D Program of China (2020YFC1908704)
More Information
  • Corresponding author: E-mail: amflora@seu.edu.cn
  • Received Date: 2022-05-10
  • Rev Recd Date: 2022-06-23
  • Available Online: 2022-07-11
  • Publish Date: 2023-03-15
  • The modified attapulgite was obtained by acid activation and loaded magnetic nano-ferrite composite modification. The applicability of attapulgite in the adsorption furnace of semi-volatile heavy metal PbCl2 vapor in different flue gas atmosphere was explored. Besides, the adsorption mechanism of PbCl2 vapor was investigated by combining FT-IR, BET, XRD and DFT theoretical calculation. The results show that acid activation increases the proportion of surface-active sites by decomposing impurities in the original ore, and the double active adsorption sites formed by the composite modified iron-based oxides and attapulgite lattice oxygen significantly enhance the adsorption capacity of PbCl2. The maximum adsorption capacity of Fe/HP2 samples with the mass ratio of 1∶2 is 67.62 (mg PbCl2/g adsorbent). When the high-temperature flue gas contains O2, SO2 and a small amount of H2O, it can enhance the adsorption capacity of modified attapulgite. In addition, DFT theoretical calculations show that H2O, O2, SO2 and PbCl2 all undergo chemisorption on the surface of ATT(110), and it also demonstrates that H2O promotes the adsorption of PbCl2 on the surface of ATT(110) and Fe/ATT(110) through co-adsorption. Weaker adsorption of PbCl2 at the adsorbed oxygen sites formed by H2O molecules instead of at the lattice oxygen sites can be preferentially bond to double active sites (the lattice oxygen sites and the oxygen site) in the iron oxide clusters through strong interactions on the Fe/ATT(110) surface.
  • loading
  • [1]
    ZHANG J, HUANG X, CHEN Y, LUO B, LUO J, ZHANG W, RAO Z, YANG F. Characterization of lead-containing atmospheric particles in a typical basin city of China: Seasonal variations, potential source areas, and responses to fireworks[J]. Sci Total Environ,2019,661:354−363. doi: 10.1016/j.scitotenv.2019.01.079
    [2]
    AWUAL M R, ISLAM A, HASAN M M, RAHMAN M M, ASIRI A M, KHALEQUE M A, SHEIKH M C. Introducing an alternate conjugated material for enhanced lead (II) capturing from wastewater[J]. J Clean Prod,2019,224:920−929. doi: 10.1016/j.jclepro.2019.03.241
    [3]
    GEORGE A, SHEN B, KANG D, YANG J, LUO J. Emission control strategies of hazardous trace elements from coal-fired power plants in China[J]. J Environ Sci -China,2020,93:66−90. doi: 10.1016/j.jes.2020.02.025
    [4]
    YU S, ZHANG C, MA L, TAN P, FANG Q, CHEN G. Deep insight into the effect of NaCl/HCl/SO2/CO2 in simulated flue gas on gas-phase arsenic adsorption over mineral oxide sorbents[J]. J Hazard Mater,2021,403:123617. doi: 10.1016/j.jhazmat.2020.123617
    [5]
    YU S, ZHANG C, MA L, TAN P, FANG Q, CHEN G. Geochemical mechanism of lead vapors over fly ash cenospheres in simulated flue gas[J]. Fuel,2021,285:119274. doi: 10.1016/j.fuel.2020.119274
    [6]
    WENDT J O, LEE S J. High-temperature sorbents for Hg, Cd, Pb, and other trace metals: Mechanisms and applications[J]. Fuel,2010,89(4):894−903. doi: 10.1016/j.fuel.2009.01.028
    [7]
    XU M, YAN R, ZHENG C, QIAO Y, HAN J, SHENG C. Status of trace element emission in a coal combustion process: A review[J]. Fuel Process. Technol.,2004,85(2/3):215−237. doi: 10.1016/S0378-3820(03)00174-7
    [8]
    WANG J, ZHANG Y, WANG T, XU H, PAN W. Effect of modified fly ash injection on As, Se, and Pb emissions in coal-fired power plant[J]. Chem Eng J,2020,380:122561. doi: 10.1016/j.cej.2019.122561
    [9]
    ZHA J, HUANG Y, CLOUGH P T, XIA Z, ZHU Z, FAN C, YU M, YAN Y, CHENG H. Green production of a novel sorbent from kaolin for capturing gaseous PbCl2 in a furnace[J]. J Hazard Mater,2021,404:124045. doi: 10.1016/j.jhazmat.2020.124045
    [10]
    XU L, LIU Y, WANG J, TANG Y, ZHANG Z. Selective adsorption of Pb2 + and Cu2 + on amino-modified attapulgite: Kinetic, thermal dynamic and DFT studies[J]. J Hazard Mater,2021,404:124140. doi: 10.1016/j.jhazmat.2020.124140
    [11]
    WANG H, HU W, WU Q, HUANG B, ZONG L, WANG A, SIEBECKER M G. Effectiveness evaluation of environmentally friendly stabilizers on remediation of Cd and Pb in agricultural soils by multi-scale experiments[J]. J Clean Prod,2021,311:127673. doi: 10.1016/j.jclepro.2021.127673
    [12]
    XU Y, LIU X, WANG H, ZENG X, ZHANG Y, HAN J, XU M, PAN S. Influences of in-furnace kaolin addition on the formation and emission characteristics of PM2.5 in a 1000 MW coal-fired power station[J]. Environ Sci Technol,2018,52(15):8718−8724. doi: 10.1021/acs.est.8b02251
    [13]
    LIU J, ZENG J, SUN S, HUANG S, KUO J, CHEN N. Combined effects of FeCl3 and CaO conditioning on SO2, HCl and heavy metals emissions during the DDSS incineration[J]. Chem Eng J,2016,299:449−458. doi: 10.1016/j.cej.2016.04.132
    [14]
    WANG X, HUANG Y, PAN Z, WANG Y, LIU C. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations[J]. J Hazard Mater,2015,295:43−54. doi: 10.1016/j.jhazmat.2015.03.020
    [15]
    ZHANG Y, LIU X, XU Y, SUN W, XU M. Investigation of reducing ultrafine particulate matter formation by adding modified montmorillonite during coal combustion[J]. Fuel Process Technol,2017,158:264−271. doi: 10.1016/j.fuproc.2017.01.019
    [16]
    ZHANG X, LIU H, XING H, LI H, HU H, LI A, YAO H. Improved sodium adsorption by modified kaolinite at high temperature using intercalation-exfoliation method[J]. Fuel,2017,191:198−203. doi: 10.1016/j.fuel.2016.11.067
    [17]
    YU S, ZHANG C, ZHANG X, LI X, WEI B, TAN P, FANG Q, CHEN G, XIA J. Release and transformation characteristics of Na/Ca/S compounds of Zhundong coal during combustion/CO2 gasification[J]. J Energy Inst,2020,93(2):752−765. doi: 10.1016/j.joei.2019.05.007
    [18]
    YU S, ZHANG C, YUAN C, XU H, MA L, FANG Q, CHEN G. Investigation on the influence of sulfur and chlorine on the initial deposition/fouling characteristics of a high-alkali coal[J]. Fuel Process Technol,2020,198:106234. doi: 10.1016/j.fuproc.2019.106234
    [19]
    YU S, ZHANG C, MA L, FANG Q, CHEN G. Insight into As2O3 adsorption characteristics by mineral oxide sorbents: Experimental and DFT study[J]. Chem Eng J,2021,420:127593. doi: 10.1016/j.cej.2020.127593
    [20]
    NOWAK B, ROCHA S F, ASCHENBRENNER P, RECHBERGER H, WINTER F. Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: Influence of the chloride type[J]. Chem Eng J,2012,179:178−185. doi: 10.1016/j.cej.2011.10.077
    [21]
    LIU T, XUE L, GUO X, HUANG Y, ZHENG C. DFT and experimental study on the mechanism of elemental mercury capture in the presence of HCl on α-Fe2O3 (001)[J]. Environ Sci Technol,2016,50(9):4863−4868. doi: 10.1021/acs.est.5b06340
    [22]
    WANG X, HUANG Y, ZHONG Z, PAN Z, LIU C. Theoretical investigation of cadmium vapor adsorption on kaolinite surfaces with DFT calculations[J]. Fuel,2016,166:333−339. doi: 10.1016/j.fuel.2015.11.004
    [23]
    YU S, ZHANG C, MA L, FANG Q, CHEN G. Experimental and DFT studies on the characteristics of PbO/PbCl2 adsorption by Si/Al-based sorbents in the simulated flue gas[J]. J Hazard Mater,2021,407:124742. doi: 10.1016/j.jhazmat.2020.124742
    [24]
    XU Y, LIU X, WANG H, ZHANG Y, QI J, XU M. Investigation of simultaneously reducing the emission of ultrafine particulate matter and heavy metals by adding modified attapulgite during coal combustion[J]. Energy Fuels,2018,33(2):1518−1526.
    [25]
    WANG X, HUANG Y, ZHONG Z, YAN Y, NIU M, WANG Y. Control of inhalable particulate lead emission from incinerator using kaolin in two addition modes[J]. Fuel Process Technol,2014,119:228−235. doi: 10.1016/j.fuproc.2013.11.012
    [26]
    CHENG H, HUANG Y, ZHU Z, DONG L, ZHA J, YU M. Enhanced PbCl2 adsorption capacity of modified kaolin in the furnace using a combined method of thermal pre-activation and acid impregnation[J]. Chem Eng J,2021,414:128672. doi: 10.1016/j.cej.2021.128672
    [27]
    WANG L, SHI Y, YAO D, PAN H, HOU H, CHEN J, CRITTENDEN J C. Cd complexation with mercapto-functionalized attapulgite (MATP): adsorption and DFT study[J]. Chem Eng J,2019,366:569−576. doi: 10.1016/j.cej.2019.02.114
    [28]
    POST J E, HEANEY P J. Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of palygorskite[J]. Am Mineral,2008,93(4):667−675. doi: 10.2138/am.2008.2590
    [29]
    ZHAO L, SHEN K, LI B, ZHANG Y, ZHANG S, HONG Y, ZHANG J, LI Z. Exploration of novel high-temperature heavy metals adsorbent for sludge incineration process: Experiments and theoretical calculations[J]. J Environ Chem Eng,2022,10(3):107755.
    [30]
    ZHANG W, QIAN L, CHEN Y, OUYANG D, HAN L, SHANG X, LI J, GU M, CHEN M. Nanoscale zero-valent iron supported by attapulgite produced at different acid modification: Synthesis mechanism and the role of silicon on Cr (VI) removal[J]. Chemosphere,2021,267:129183. doi: 10.1016/j.chemosphere.2020.129183
    [31]
    ZHANG T, WANG W, ZHAO Y, BAI H, WEN T, KANG S, SONG G, SONG S, KOMARNENI S. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites[J]. Chem Eng J,2021,420:127574. doi: 10.1016/j.cej.2020.127574
    [32]
    LIU Y, LIU P, SU Z, LI F, WEN F. Attapulgite-Fe3O4 magnetic nanoparticles via co-precipitation technique[J]. Appl. Surf. Sci. 2008, 255(5, Part 1): 2020−2025.
    [33]
    PAN J, XU L, DAI J, LI X, HANG H, HUO P, LI C, YAN Y. Magnetic molecularly imprinted polymers based on attapulgite/Fe3O4 particles for the selective recognition of 2, 4-dichlorophenol[J]. Chem Eng J,2011,174(1):68−75. doi: 10.1016/j.cej.2011.08.046
    [34]
    ZHU L, GUO J, LIU P, ZHAO S. Novel strategy for palygorskite/poly (acrylic acid) nanocomposite hydrogels from bi-functionalized palygorskite nanorods as easily separable adsorbent for cationic basic dye[J]. Appl Clay Sci,2016,121:29−35.
    [35]
    LIU Y, LIU P, SU Z, LI F, WEN F. Attapulgite-Fe3O4 magnetic nanoparticles via co-precipitation technique[J]. Appl Surf Sci,2008,255(5):2020−2025. doi: 10.1016/j.apsusc.2008.06.193
    [36]
    TANG J, MU B, ZONG L, WANG A. One-step synthesis of magnetic attapulgite/carbon supported NiFe-LDHs by hydrothermal process of spent bleaching earth for pollutants removal[J]. J Clean Prod,2018,172:673−685. doi: 10.1016/j.jclepro.2017.10.181
    [37]
    LIU J, ZHANG J, XING L, WANG D, WANG L, XIAO H, KE J. Magnetic Fe3O4/attapulgite hybrids for Cd (II) adsorption: performance, mechanism and recovery[J]. J Hazard Mater,2021,412:125237. doi: 10.1016/j.jhazmat.2021.125237
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (702) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return