Volume 50 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
XU Kai, LIU Lu, JING Jie-ying, FENG Jie, LI Wen-ying. Preparation and hydrogen production performance of CaO-Ca3Al2O6@Ni-SiO2 composite catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1619-1628. doi: 10.19906/j.cnki.JFCT.2022057
Citation: XU Kai, LIU Lu, JING Jie-ying, FENG Jie, LI Wen-ying. Preparation and hydrogen production performance of CaO-Ca3Al2O6@Ni-SiO2 composite catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1619-1628. doi: 10.19906/j.cnki.JFCT.2022057

Preparation and hydrogen production performance of CaO-Ca3Al2O6@Ni-SiO2 composite catalyst

doi: 10.19906/j.cnki.JFCT.2022057
Funds:  The project was supported by National Key Research and Development Program of China (2019YFC1906804-03)
  • Received Date: 2022-05-02
  • Accepted Date: 2022-07-04
  • Rev Recd Date: 2022-06-27
  • Available Online: 2022-07-11
  • Publish Date: 2022-12-28
  • Sorption-enhanced steam methane reforming achieves one-step production of high purity hydrogen by in-situ removal of CO2. However, the volume change of the adsorption component CaO in the composite catalyst during the adsorption and desorption of CO2 generally caused the structure collapse of the composite catalyst. At the same time, the active component Ni would also be embedded by the generated CaCO3, resulting in the decline of catalytic and adsorption performance and seriously affecting the purity of hydrogen production. How to prepare bifunctional composite catalyst with high stability is one of the key problems to be solved in the industrial application of this technology. In this work, CaO-Ca3Al2O6@Ni-SiO2 composite catalyst was prepared by the self-template approach using the cationic surfactant-assisted etching mechanism. In the experiment of hydrogen production by adsorption enhanced CH4/H2O reforming, the hydrogen production concentration over the composite catalyst reached 99.6%, and it still remained 97.3% after 10 cycles, which was closely related to the special structure of the prepared CaO-Ca3Al2O6@Ni-SiO2 composite catalyst. When the reaction was proceeded, the repeated expansion and contraction of CaO-Ca3Al2O6 volume in the composite catalyst was performed in the SiO2 cavity and would not cause the structure collapse of the composite catalyst. At the same time, the SiO2 coating on catalytic component Ni could prevent its agglomeration and deactivation during the decarburization and regeneration process. However, it was found that only part of the catalytic component Ni possessed a core-shell structure with Ni as the core and SiO2 as the shell, and there were some Ni directly loaded on the shell SiO2, leading to CH4 conversion dropping from 99.5% to 91.8% in 10 cycles.
  • loading
  • [1]
    HAN C, P. HARRISON D. Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen[J]. Chem Eng Sci,1994,49(24):5875−5883. doi: 10.1016/0009-2509(94)00266-5
    [2]
    HERCE C, CORTES C, STENDARDO S. Numerical simulation of a bubbling fluidized bed reactor for sorption-enhanced steam methane reforming under industrially relevant conditions: Effect of sorbent (dolomite and CaO-Ca12Al14O33) and operational parameters[J]. Fuel Process Technol,2019,186:137−148. doi: 10.1016/j.fuproc.2019.01.003
    [3]
    厉勇, 张英, 王元华. 甲烷水蒸气重整技术研究现状及进展[J]. 炼油技术与工程,2019,49(7):1−7. doi: 10.3969/j.issn.1002-106X.2019.07.001

    LI Yong, ZHANG Ying, WANG Yuan-hua. Research status and progress of methane steam reforming technology[J]. Petrol Refin Eng,2019,49(7):1−7. doi: 10.3969/j.issn.1002-106X.2019.07.001
    [4]
    SOLSVIK J, SANCHEZ R A, CHAO Z X, JAKOBSEN H A. Simulations of steam methane reforming/sorption-enhanced steam methane reforming bubbling fluidized bed reactors by a dynamic one-dimensional two-fluid model: Implementation issues and model validation[J]. Ind Eng Chem,2013,52(11):4202−4220. doi: 10.1021/ie303348r
    [5]
    李婷玉. 吸附强化甲烷水蒸气重整中CaO基吸附剂的改性研究[D]. 太原: 太原理工大学, 2016.

    LI Ting-yu. The modification of CaO-based Sorbents used for sorption enhanced methane steam reforming[D]. Taiyuan: Taiyuan University of Technology, 2016.
    [6]
    王云珠, 泮子恒, 赵燚, 罗永明, 高晓亚. 吸附强化蒸汽重整制氢中CO2固体吸附剂的研究进展[J]. 化工进展,2019,38(11):5103−5113.

    WANG Yun-zhu, PAN Zi-heng, ZHAO Yi, LUO Yong-ming, GAO Xiao-ya. Research progress in CO2 solid sorbents for hydrogen production by sorption-enhanced steam reforming: A review[J]. Chem Ind Eng Prog,2019,38(11):5103−5113.
    [7]
    FOO H C Y, TAN I S, MOHAMED A R, LEE K T. Insights and utility of cycling-induced thermal deformation of calcium-based microporous material as post-combustion CO2 sorbents[J]. Fuel,2020,260:116354. doi: 10.1016/j.fuel.2019.116354
    [8]
    荆洁颖,王世东,张学伟,李清,李文英. Ca/Al物质的量比对Ni/CaO-Al2O3结构及其催化重整性能的影响[J]. 燃料化学学报,2017,45(8):956−962. doi: 10.1016/S1872-5813(17)30046-4

    JING Jie-ying, WANG Shi-dong, ZHANG Xue-wei, LI Qing, LI Wen-ying. Influence of Ca/Al molar ratio on structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. J Fuel Chem Technol,2017,45(8):956−962. doi: 10.1016/S1872-5813(17)30046-4
    [9]
    荆洁颖,张子毅,王世东,李文英. 焙烧温度对Ni/CaO-Al2O3结构及其催化重整性能的影响[J]. 燃料化学学报,2018,46(6):673−679. doi: 10.1016/S1872-5813(18)30030-6

    JING Jie-ying, ZHANG Zi-yi, WANG Shi-dong, LI Wen-ying. Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. J Fuel Chem Technol,2018,46(6):673−679. doi: 10.1016/S1872-5813(18)30030-6
    [10]
    蔡雨露, 田静卓, 张晓雪, 史浩锋, 赵彬然. 镍基核壳结构催化剂的制备及其在甲烷二氧化碳催化重整中的应用[J]. 天然气化工(C1化学与化工),2020,45(1):103−107.

    CAI Yu-lu, TIAN Jing-zhuo, ZHANG Xiao-xue, SHI Hao-feng, ZHAO Bin-ran. Preparation of nickel-based core-shell catalysts and their application in carbon dioxide reforming of methane[J]. Nat Gas Chem Ind,2020,45(1):103−107.
    [11]
    CHEN X L, YANG L, ZHOU Z M, CHENG Z M. Core-shell structured CaO-Ca9Al6O18@ Ca5Al6O14/Ni bifunctional material for sorption-enhanced steam methane reforming[J]. Chem Eng Sci,2017,163:114−122. doi: 10.1016/j.ces.2017.01.036
    [12]
    XU J Y, WU S F. Stability of complex catalyst with NiO@TiO2 core-shell structure for hydrogen production[J]. Int J Hydrog Energy,2018,43(22):10294−10300. doi: 10.1016/j.ijhydene.2018.04.095
    [13]
    JING J Y, LI T Y, ZHANG X W, WANG S D, TURMEL W A, LI W Y. Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism[J]. Appl Energy,2017,199:225−233. doi: 10.1016/j.apenergy.2017.03.131
    [14]
    PRIETO G, TÜYSÜZ H, DUYCKAERTS N, KNOSSALLA J, GUANG-HUI WANG, SCHÜTH F. Hollow Nano- and Microstructures as Catalysts[J]. Chem Rev,2016,116(22):14056−14119. doi: 10.1021/acs.chemrev.6b00374
    [15]
    WONG Y J, ZHU L, TEO W S, TAN Y W, YANG Y, WANG C, CHEN H. Revisiting the stober method: Inhomogeneity in silica shells[J]. J Am Chem Soc,2011,133(30):11422−11425. doi: 10.1021/ja203316q
    [16]
    LI W, TIAN Y, ZHAO C H, ZHANG B L, ZHANG H P, ZHANG Q Y, GENG W C. Investigation of selective etching mechanism and its dependency on the particle size in preparation of hollow silica spheres[J]. J Nanopart Res,2015,17(12):1−11.
    [17]
    TAN L F, LIU T L, LI L L, LIU H Y, WU X L, GAO F P, HE X L, MENG X W, CHEN D, TANG F Q. Uniform double-shelled silica hollow spheres: acid/base selective-etching synthesis and their drug delivery application[J]. RSC Adv,2013,3(16):5649−5655. doi: 10.1039/c3ra40733k
    [18]
    FANG X L, CHEN C, LIU Z H, LIU P X, ZHENG N F. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres[J]. Nanoscale,2011,3(4):1632−1639. doi: 10.1039/c0nr00893a
    [19]
    JING J Y, ZHANG X W, LI Q, LI T Y, LI W Y. Self-activation of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere[J]. Appl Energy,2018,220:419−225. doi: 10.1016/j.apenergy.2018.03.069
    [20]
    KIM S M, ABDALA P M, HOSSEINI D, ARMUTLULU A, MARGOSSIAN T, COPéRET C, MüLLER C. Ru/Ca3Al2O6-CaO catalyst-CO2 sorbent for the production of high purity hydrogen via sorption-enhanced steam methane reforming[J]. Catal Sci Technol,2019,9(20):5745−5756. doi: 10.1039/C9CY01095E
    [21]
    PECHARAUMPORN P, WONGSAKULPHASATCH S, GLINRUN T, MANEEDAENG A, HASSAN Z, ASSABUMRUNGRAT S. Synthetic CaO-based sorbent for high-temperature CO2 capture in sorption-enhanced hydrogen production[J]. Int J Hydrog Energy,2019,44(37):20663−20677. doi: 10.1016/j.ijhydene.2018.06.153
    [22]
    VANGA G, GATTIAA D M, STENDARDO S, SCACCIAA S. Novel synthesis of combined CaO-Ca12Al14O33-Ni sorbent-catalyst material for sorption enhanced steam reforming processes[J]. Ceram Int,2019,45(6):7594−7605. doi: 10.1016/j.ceramint.2019.01.054
    [23]
    ANTZARAS A N, HERACLEOUS E, LEMONIDOU A A. Hybrid catalytic materials with CO2 capture and oxygen transfer functionalities for high–purity H2 production[J]. Catal Today,2021,369:2−11. doi: 10.1016/j.cattod.2020.06.018
    [24]
    GIULIANO A D, GALLUCCI K, FOSCOLO P U, COURSON C. Effect of Ni precursor salts on Ni-mayenite catalysts for steam methane reforming and on Ni-CaO mayenite materials for sorption enhanced steam methane reforming[J]. Int J Hydrog Energy,2019,44(13):6461−6480. doi: 10.1016/j.ijhydene.2019.01.131
    [25]
    GHUNGRUD S A, DEWOOLKAR K D, VAIDYA P D. Cerium-promoted bi-functional hybrid materials made of Ni, Co and hydrotalcite for sorption enhanced steam methane reforming (SESMR)[J]. Int J Hydrog Energy,2019,44(2):694−706. doi: 10.1016/j.ijhydene.2018.11.002
    [26]
    HAFIZI A, RAHIMPOUR M R, HERAVI M. Experimental investigation of improved calcium based CO2 sorbent and Co3O4/SiO2 oxygen carrier for clean production of hydrogen in sorption enhanced chemical looping reforming[J]. Int J Hydrog Energy,2019,44(33):17863−17877. doi: 10.1016/j.ijhydene.2019.05.030
    [27]
    CHEN C H, YU C T, CHEN W H, KUO H T. Effect of in-situ carbon dioxide sorption on methane reforming by nickel-calcium composite catalyst for hydrogen production[J]. Earth Environ Sci,2020,463(1):012102.
    [28]
    MICHELI F, SCIARRA M, COURSONA C, GALLUCCI K. Catalytic steam methane reforming enhanced by CO2 capture on CaO based bi-functional compounds[J]. J Energy Chem,2017,26(5):1014−1025. doi: 10.1016/j.jechem.2017.09.001
    [29]
    HU J W, HONGMANOROM P, V. GALVITA V, LI Z, KAWI S. Bifunctional Ni-Ca based material for integrated CO2 capture and conversion via calcium-looping dry reforming[J]. Appl Catal B: Environ,2021,284:119734. doi: 10.1016/j.apcatb.2020.119734
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (235) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return