Volume 50 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
ZHAO Xiao-yan, TANG Wen, CAO Jing-pei, REN Jie. Recent progress of tar reforming over char supported metal catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1547-1563. doi: 10.19906/j.cnki.JFCT.2022062
Citation: ZHAO Xiao-yan, TANG Wen, CAO Jing-pei, REN Jie. Recent progress of tar reforming over char supported metal catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1547-1563. doi: 10.19906/j.cnki.JFCT.2022062

Recent progress of tar reforming over char supported metal catalyst

doi: 10.19906/j.cnki.JFCT.2022062
Funds:  The project was supported by the National Science Foundation of China (22178374,21978317) and Distinguished Youth Fund of Natural Science Foundation of Jiangsu Province (BK20200028)
  • Received Date: 2022-05-28
  • Accepted Date: 2022-07-19
  • Rev Recd Date: 2022-07-16
  • Available Online: 2022-07-28
  • Publish Date: 2022-12-28
  • Tar deposition is one of the obstructions which limits the large scale use of biomass gasification. Catalytic reforming is the most available and efficient technology for which the investigation of a high and stable catalyst is of great significance. Great attention has been paid to the char supported metal catalysts for their simple preparation, low cost and easy recovery of active metals. In this work, based on the origin and preparation of char-supported metal catalysts, we firstly reviewed its performance for the steam reforming of tar model compound, especially for the high activity and stability of highly-dispersed metal under low temperature. Additionally, we also reviewed biomass tar reforming over the char supported metal catalyst, compared their performance with traditionally tar reforming catalysts, and summarized the relevant catalytic reaction mechanism. It can be concluded that the catalysts have good application advantages and prospects. At first, char supports are favor to disperse active metal sites, thus the prepared nano catalysts are active for tar reforming into H2-rich syngas at mild conditions. Furthermore, energy and metal oxides can be obtained by burning spent catalysts. However, more researches are necessary to deeply reveal the mechanism for tar reforming and improve the stability of char supported metal catalysts.
  • loading
  • [1]
    GAO N B, KAMRAN K, QUAN C, WILLIAMS P T. Thermochemical conversion of sewage sludge: A critical review[J]. Prog Energ Combust,2020,79:100843. doi: 10.1016/j.pecs.2020.100843
    [2]
    GUO F Q, JIA X P, LIANG S, ZHOU N, CHEN P, RUAN R. Development of biochar-based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification[J]. Bioresour Technol,2020,298:122263. doi: 10.1016/j.biortech.2019.122263
    [3]
    朱锡锋, 陆强. 生物质热解原理与技术[M]. 北京: 科学出版社, 2014.

    ZHU Xi-feng, LU Qiang. Biomass Pyrolysis Principle and Technology[M]. Beijing: Science Press, 2014.
    [4]
    REN J, LIU Y L, ZHAO X Y, CAO J P. Biomass thermochemical conversion: A review on tar elimination from biomass catalytic gasification[J]. J Energy Inst,2020,93(3):1083−1098. doi: 10.1016/j.joei.2019.10.003
    [5]
    REN J, CAO J P, ZHAO X Y, YANG F L, WEI X Y. Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models[J]. Renewable Sustainable Energy Rev,2019,116:109426. doi: 10.1016/j.rser.2019.109426
    [6]
    REN J, CAO J P, ZHAO X Y, LIU Y L. Recent progress and perspectives of catalyst design and downstream integration in biomass tar reforming[J]. Chem Eng J,2022,429:132316. doi: 10.1016/j.cej.2021.132316
    [7]
    GAO N B, SALISU J, QUAN C, WILLIAMS P. Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review[J]. Renewable Sustainable Energy Rev,2021,145:111023. doi: 10.1016/j.rser.2021.111023
    [8]
    SHEN Y F, YOSHIKAWA K. Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review[J]. Renewable Sustainable Energy Rev,2013,21:371−392. doi: 10.1016/j.rser.2012.12.062
    [9]
    GUAN G Q, KAEWPANHA M, HAO X G, ABUDULA A. Catalytic steam reforming of biomass tar: Prospects and challenges[J]. Renewable Sustainable Energy Rev,2016,58:450−461. doi: 10.1016/j.rser.2015.12.316
    [10]
    LEE J, KIM K H, KWON E E. Biochar as a catalyst[J]. Renewable Sustainable Energy Rev,2017,77:70−79. doi: 10.1016/j.rser.2017.04.002
    [11]
    王聪哲, 许桂英. 天然非均相焦油裂解催化剂研究进展[J]. 现代化工,2018,38(12):34−40. doi: 10.16606/j.cnki.issn0253-4320.2018.12.008

    WANG Cong-zhe, XU Gui-ying. Study progress in natural heterogeneous catalysts for tar cracking[J]. Mod Chem Ind,2018,38(12):34−40. doi: 10.16606/j.cnki.issn0253-4320.2018.12.008
    [12]
    梁鹏, 王晓航, 张希望, 魏爱芳, 姜万敏, 张荣, 毕继诚. 含尘焦油在改性白云石催化剂上的裂解特性[J]. 燃料化学学报,2015,43(8):932−939. doi: 10.3969/j.issn.0253-2409.2015.08.005

    LIANG Peng, WANG Xiao-hang, ZHANG Xi-wang, WEI Ai-fang, JIANG Wan-min, ZHANG Rong, BI Ji-cheng. Cracking characteristics of dust-containing tar over modified dolomite catalyst[J]. J Fuel Chem Technol,2015,43(8):932−939. doi: 10.3969/j.issn.0253-2409.2015.08.005
    [13]
    牛永红, 宋子曌, 李义科, 王文才, 温建军, 郑坤灿. 载镧白云石催化剂对松木催化气化性能的研究[J]. 燃料化学学报,2021,49(1):47−54. doi: 10.1016/S1872-5813(21)60005-1

    NIU Yong-hong, SONG Zi-zhao, LI Yi-ke, WANG Wen-cai, WEN Jian-jun, ZHENG Kun-can. Performance research of lanthanum-loaded dolomite catalyst for pine catalytic gasification[J]. J Fuel Chem Technol,2021,49(1):47−54. doi: 10.1016/S1872-5813(21)60005-1
    [14]
    谢玉荣, 沈来宏, 肖军, 王俊, 常连成. 生物质焦油模拟物重整制取富氢气体实验研究[J]. 燃料化学学报,2011,39(11):823−830. doi: 10.3969/j.issn.0253-2409.2011.11.005

    XIE Yu-rong, SHEN Lai-hong, XIAO Jun, WANG Jun, CHANG Lian-cheng. Experimental research on model compound reforming of biomass tar to produce H2-rich gas[J]. J Fuel Chem Technol,2011,39(11):823−830. doi: 10.3969/j.issn.0253-2409.2011.11.005
    [15]
    ZHAO X Y, REN X Y, REN J, CAO J P, WEI F, ZHU C, FAN X, ZHAO Y P, WEI X Y. Catalytic reforming of volatiles from biomass pyrolysis for hydrogen-rich gas production over limonite ore[J]. Energy Fuels,2017,31(4):4054−4060. doi: 10.1021/acs.energyfuels.7b00005
    [16]
    杜朕屹, 徐趁, 张志华. Ni/半焦催化甲苯水蒸气重整反应的稳定性研究[J]. 太原理工大学学报,2019,50(6):771−777.

    DU Zhen-yi, XU Chen, ZHANG Zhi-hua. Study on the Stability of Ni/Biochar Catalyst for Catalytic Steam Reforming of Toluene[J]. J Taiyuan Univ Technol,2019,50(6):771−777.
    [17]
    刘启聪, 何立模, 邓增通, 郭俊豪, 吴鹏, 胡松, 向军, 苏胜, 许凯, 汪一. Fe/生物质焦预重整在Ni基催化重整生物油中的作用[J]. 化工进展,2018,37(11):4273−4279. doi: 10.16085/j.issn.1000-6613.2017-2685

    LIU Qi-cong, HE Li-mo, DENG Zeng-tong, GUO Jun-hao, WU Peng, HU Song, XIANG Jun, SU Sheng, XU Kai, WANG Yi. Effect of Fe/bio-char pre-reforming on Ni-based catalytic reforming of bio oil[J]. Chem Ind Eng Progress,2018,37(11):4273−4279. doi: 10.16085/j.issn.1000-6613.2017-2685
    [18]
    REN X Y, FENG X B, CAO J P, TANG W, WANG Z H, YANG Z, ZHAO J P, ZHANG L Y, WANG Y J, ZHAO X Y. Catalytic conversion of coal and biomass volatiles: A review[J]. Energy Fuels,2020,34(9):10307−10363. doi: 10.1021/acs.energyfuels.0c01432
    [19]
    TANG W, CAO J P, YANG F L, FENG X B, REN J, WANG J X, ZHAO X Y, ZHAO M, CUI X, WEI X Y. Highly active and stable HF acid modified HZSM-5 supported Ni catalysts for steam reforming of toluene and biomass pyrolysis tar[J]. Energy Convers Manage,2020,212:112799. doi: 10.1016/j.enconman.2020.112799
    [20]
    杨泽, 李挺, 王美君, 常丽萍, 任秀蓉. Ni基生物质焦油重整催化剂的研究进展[J]. 化工进展,2016,35(10):3155−3163.

    YANG Ze, LI Ting, WANG Mei-jun, CHANG Li-ping, REN Xiu-rong. Research progress on Ni-based catalyst for tar reforming in biomass gasification[J]. Chem Ind Eng Progress,2016,35(10):3155−3163.
    [21]
    尚双, 兰奎, 王艳, 张娟娟, 秦振华, 李建芬. 生物质焦油重整催化剂的研究进展[J]. 生物质化学工程,2020,54(6):65−73.

    SHANG Shuan, LAN Kui, WANG Yan, ZHANG Juan-juan, QIN Zhen-hua, LI Jian-fen. Research progress on catalyst for tar reforming in biomass gasification[J]. Biomass Chem Eng,2020,54(6):65−73.
    [22]
    ZHANG Z K, LIU L N, SHEN B X, WU C F. Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification[J]. Renewable Sustainable Energy Rev,2018,94:1086−1109. doi: 10.1016/j.rser.2018.07.010
    [23]
    TANG W, CAO J P, WANG Z H, HE Z M, LIU T L, WANG Z Y, YANG F L, REN J, ZHAO X Y, FENG X B, BAI H C. Comparative evaluation of tar steam reforming over graphitic carbon supported Ni and Co catalysts at low temperature[J]. Energ Convers Manage,2021,244:114454. doi: 10.1016/j.enconman.2021.114454
    [24]
    YANG F L, CAO J P, ZHAO X Y, REN J, TANG W, HUANG X, FENG X B, ZHAO M, CUI X, WEI X Y. Acid washed lignite char supported bimetallic Ni-Co catalyst for low temperature catalytic reforming of corncob derived volatiles[J]. Energy Convers Manage,2019,196:1257−1266. doi: 10.1016/j.enconman.2019.06.075
    [25]
    孔娇, 王欢, 于彦旭, 程亚楠, 王美君, 常丽萍, 鲍卫仁. 半焦原位气化气对淖毛湖煤热解焦油产率和品质的影响[J]. 燃料化学学报,2022,50(4):1−11.

    KONG Jiao, WANG Huan, YU Yan-xu, CHEN Ya-nan, WANG Mei-jun, CHANG Li-ping, BAO Wei-ren. Effects of syngas from semi-coke in situ gasification on yield and quality of tar from pyrolysis of Naomaohu coal[J]. J Fuel Chem Technol,2022,50(4):1−11.
    [26]
    韦兵, 陈倩, 王伟成, 张万祥, 陶睿旻, 窦艺帆, 王兴军. 榆林煤水蒸气气化条件下钾的迁移行为研究[J]. 燃料化学学报,2022,50(1):1−10. doi: 10.1016/S1872-5813(21)60136-6

    WEI Bing, CHEN Qian, WANG Wei-cheng, ZHANG Wan-xiang, TAO Rui-min, DOU Yi-fan, WANG Xing-jun. Study on the migration behavior of potassium under the condition of steam gasification of Yulin coal[J]. J Fuel Chem Technol,2022,50(1):1−10. doi: 10.1016/S1872-5813(21)60136-6
    [27]
    何清, 程晨, 龚岩, 丁路, 于广锁. 水热炭化生物质与煤共热解和共气化特性研究[J]. 燃料化学学报,2022,50(6):1−10. doi: 10.19906/j.cnki.jfct.2022002

    HE Qing, CHEN chen, GONG Yan, DING Lu, YU Guang-suo. Study on co-pyrolysis and co-gasification of hydrothermal carbonized biomass and coal[J]. J Fuel Chem Technol,2022,50(6):1−10. doi: 10.19906/j.cnki.jfct.2022002
    [28]
    REN J, CAO J P, ZHAO X Y, LIU Y L. Fundamentals and applications of char in biomass tar reforming[J]. Fuel Process Technol,2021,216:106782. doi: 10.1016/j.fuproc.2021.106782
    [29]
    HAO Z Q, Cao J P, Wu Y, ZHAO X Y, ZHUANG Q Q, WANG X Y, WEI X Y. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor[J]. J Power Sources,2017,361:249−258. doi: 10.1016/j.jpowsour.2017.06.086
    [30]
    何鑫, 王文峰, 章新喜, 杨奕涛, 孙浩. 低阶煤显微组分含氧官能团的分布特征与差异[J]. 煤炭学报,2021,46(9):2804−2812.

    HE Xin, WANG Wen-feng, ZHANG Xin-xi, YANG Yi-tao, SUN Hao. Distribution characteristics and differences of oxygen-containing functional groups in macerals of low rank coal[J]. J China Coal Soc,2021,46(9):2804−2812.
    [31]
    周剑林, 王永刚, 黄鑫, 张书, 林熊超. 低阶煤中含氧官能团分布的研究[J]. 燃料化学学报,2013,41(2):134−138. doi: 10.3969/j.issn.0253-2409.2013.02.002

    ZHOU Jian-lin, WANG Yong-gang, HUANG Xin, ZHANG Shu, LIN Xiong-chao. Determination of O-containing functional groups distribution in low-rank coals by chemical titration[J]. J Fuel Chem Technol,2013,41(2):134−138. doi: 10.3969/j.issn.0253-2409.2013.02.002
    [32]
    WANG B S, CAO J P, ZHAO X Y, BIAN Y, SONG C, ZHAO Y P, FAN X, WEI X Y, TAKARADA T. Preparation of nickel-loaded on lignite char for catalytic gasification of biomass[J]. Fuel Process Technol,2015,136:17−24. doi: 10.1016/j.fuproc.2014.07.024
    [33]
    LI L Y, MORISHITA K, MOGI H, YAMASAKI K, AKARADA T. Low-temperature gasification of a woody biomass under a nickel-loaded brown coal char[J]. Fuel Process Technol,2010,91(8):889−894. doi: 10.1016/j.fuproc.2009.08.003
    [34]
    REN J, CAO J P, ZHAO X Y, WEI F, LIU T L, FAN X, ZHAO Y P, WEI X Y. Preparation of high-dispersion Ni/C catalyst using modified lignite as carbon precursor for catalytic reforming of biomass volatiles[J]. Fuel,2017,202:345−351. doi: 10.1016/j.fuel.2017.04.060
    [35]
    REN L, YANG L J, BAI Y H, LIU Y, LV P, WANG Y X, LI F. Effects of loading methods and oxidation degree of support on the tar reforming activity of char-supported Ni catalyst using toluene as a model compound[J]. Fuel Process Technol,2020,201:106347. doi: 10.1016/j.fuproc.2020.106347
    [36]
    XIAO X B, CAO J P, MENG X L, LE D D, TAKARADA T. Synthesis gas production from catalytic gasification of waste biomass using nickel-loaded brown coal char[J]. Fuel,2013,103:135−140. doi: 10.1016/j.fuel.2011.06.077
    [37]
    QIAN K Z, KUMAR A. Catalytic reforming of toluene and naphthalene (model tar) by char supported nickel catalyst[J]. Fuel,2017,187:128−136. doi: 10.1016/j.fuel.2016.09.043
    [38]
    LIU X J, YANG X Q, LIU C. Low-temperature catalytic steam reforming of toluene over activated carbon supported nickel catalysts[J]. J Taiwan Inst Chem E,2016,65:233−241.
    [39]
    SHEN C, ZHOU W Q YU H, DU L. Ni nanoparticles supported on carbon as efficient catalysts for steam reforming of toluene (model tar)[J]. Chin J Chem Eng,2018,26(2):322−329. doi: 10.1016/j.cjche.2017.03.028
    [40]
    DU Z Y, ZHANG Z H, XU C, WANG X B, LI W Y. Low-temperature steam reforming of toluene and biomass tar over biochar-supported Ni nanoparticles[J]. ACS Sustainable Chem Energy,2018,7(3):3111−3119.
    [41]
    XU C, DU Z Y, YANG S Q, MA H D, FENG J. Effects of inherent potassium on the catalytic performance of Ni/biochar for steam reforming of toluene as a tar model compound[J]. Chin J Chem Eng,2021,35:189−195. doi: 10.1016/j.cjche.2020.06.010
    [42]
    GAI C, ZHANG F, GUO Y C, PENG N N, LIU T T, LANG Q Q, XIA Y, LIU Z G. Hydrochar-supported, in situ-generated nickel nanoparticles for sorption-enhanced catalytic gasification of sewage sludge[J]. ACS Sustainable Chem Eng,2017,5(9):7613−7622. doi: 10.1021/acssuschemeng.7b00924
    [43]
    GAI C, DONG Y P, FAN P F, ZHANG Z L, LIANG J C, XU P J. Kinetic study on thermal decomposition of toluene in a micro fluidized bed reactor[J]. Energy Convers Manage,2015,106:721−727. doi: 10.1016/j.enconman.2015.09.038
    [44]
    GAI C, ZHANG F, LANG Q Q, LIU T T, PENG N N. Facile one-pot synthesis of iron nanoparticles immobilized into the porous hydrochar for catalytic decomposition of phenol[J]. Appl Catal B: Environ,2017,204:566−576. doi: 10.1016/j.apcatb.2016.12.005
    [45]
    GAI C, ZHANG F, YANG T X, LIU Z G, JIAO W T, PENG N N, LIU T T, LANG Q Q, XIA Y. Hydrochar supported bimetallic Ni-Fe nanocatalysts with tailored composition, size and shape for improved biomass steam reforming performance[J]. Green Chem,2018,20:2788−2800. doi: 10.1039/C8GC00433A
    [46]
    GAI C, ZHU N M, HOEKMAN S K, LIU Z G, JIAO W T, PENG N N. Highly dispersed nickel nanoparticles supported on hydrochar for hydrogen-rich syngas production from catalytic reforming of biomass[J]. Energy Convers Manage,2019,183:474−484. doi: 10.1016/j.enconman.2018.12.121
    [47]
    KANG S F, HE M F, YIN C C, XU H Y, CAI Q, WANG Y G, CUI L F. Graphitic carbon embedded with Fe/Ni nano-catalysts derived from bacterial precursor for efficient toluene cracking[J]. Green Chem,2020,22(6):1934−1943. doi: 10.1039/C9GC03357B
    [48]
    QIU P H, DU C S, LIU L, CHEN L. Hydrogen and syngas production from catalytic steam gasification of char derived from ion-exchangeable Na- and Ca-loaded coal[J]. Int J Hydrogen Energy,2018,43:12034−12048. doi: 10.1016/j.ijhydene.2018.04.055
    [49]
    ZHANG J, TANG J, LIU L J, WANG J. The evolution of catalytically active calcium catalyst during steam gasification of lignite char[J]. Carbon,2021,172:162−173. doi: 10.1016/j.carbon.2020.09.089
    [50]
    ZOU X H, MA Z Y, LIU H B, CHEN D, WANG C, ZHANG P, CHEN T H. Green synthesis of Ni supported hematite catalysts for syngas production from catalytic cracking of toluene as a model compound of biomass tar[J]. Fuel,2018,217:343−351.
    [51]
    BAIDYA T, CATTOLICA R J, SEISER R. High performance Ni-Fe-Mg catalyst for tar removal in producer gas[J]. Appl Catal A: Gen,2018,558:131−139. doi: 10.1016/j.apcata.2018.03.026
    [52]
    WU G W, ZHANG C X, LI S R, HAN Z P, WANG T, MA X B, GONG J L. Hydrogen production via glycerol steam reforming over Ni/Al2O3: Influence of nickel precursors[J]. ACS Sustainable Chem Energy,2013,1(8):1052−1062. doi: 10.1021/sc400123f
    [53]
    TEOH F, VEKSHA A, CHIA V W K, UDAYANGA W D C, MOHAMED D K B, GIANNIS A, LIM T T, LISAK G. Nickel-based catalysts for steam reforming of naphthalene utilizing gasification slag from municipal solid waste as a support[J]. Fuel,2019,254:115561. doi: 10.1016/j.fuel.2019.05.144
    [54]
    WANG S X, SHAN R, GU J, ZHANG J, YUAN H R, CHEN Y. Pyrolysis waste char supported metallic catalyst for syngas production during catalytic reforming of benzene[J]. Int J Hydrogen Energy,2021,46(38):19835−19845. doi: 10.1016/j.ijhydene.2021.03.115
    [55]
    WANG S X, SHAN R, LU T, ZHANG Y Y, YUAN H R. Pyrolysis char derived from waste peat for catalytic reforming of tar model compound[J]. Appl Energy,2020,263:114565.
    [56]
    GU J, WANG S X, LU T, WU Y F, YUAN H R, CHEN Y. Synthesis and evaluation of pyrolysis waste peat char supported catalyst for steam reforming of toluene[J]. Renewable Energy,2020,160:964−973. doi: 10.1016/j.renene.2020.06.109
    [57]
    KIM S, CHUN D, RHIM Y, LIM J, KIM S, CHOI H, LEE S, YOO J. Catalytic reforming of toluene using a nickel ion-exchanged coal catalyst[J]. Int J Hydrogen Energy,2015,40(35):11855−11862. doi: 10.1016/j.ijhydene.2015.06.103
    [58]
    XIAO X B, LIU J, GAO A N, ZHOU-YU M Q, LIU B H, GAO M D, ZHANG X L, LU Q, DONG C Q. The performance of nickel-loaded lignite residue for steam reforming of toluene as the model compound of biomass gasification tar[J]. J Energy Inst,2018,91(6):867−876. doi: 10.1016/j.joei.2017.10.002
    [59]
    REN J, CAO J P, YANG F L, ZHAO X Y, TANG W, CUI X, CHEN Q, WEI X Y. Layered uniformly delocalized electronic structure of carbon supported Ni catalyst for catalytic reforming of toluene and biomass tar[J]. Energy Convers Manage,2019,183:182−192. doi: 10.1016/j.enconman.2018.12.093
    [60]
    LU G H, BAI Y H, REN L, WANG J F, SONG X D, YU G S. Role of phosphorus (P) additive in the performance of char-supported nickel (Ni) catalyst on tar reforming[J]. Energy Convers Manage,2020,225:113471. doi: 10.1016/j.enconman.2020.113471
    [61]
    FURUSAWA T, TSUTSUMI A. Comparison of Co/MgO and Ni/MgO catalysts for the steam reforming of naphthalene as a model compound of tar derived from biomass gasification[J]. Appl Catal A: Gen,2005,278(2):207−212. doi: 10.1016/j.apcata.2004.09.035
    [62]
    GRELUK M, ROTKO M, TURCZYNIAK SURDACKA S. Comparison of catalytic performance and coking resistant behaviors of cobalt- and nickel based catalyst with different Co/Ce and Ni/Ce molar ratio under SRE conditions[J]. Appl Catal A: Gen,2020,590:117334. doi: 10.1016/j.apcata.2019.117334
    [63]
    AY H, ÜNER D. Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts[J]. Appl Catal B: Environ,2015,179:128−138. doi: 10.1016/j.apcatb.2015.05.013
    [64]
    GUO F Q, Li X L, LIU Y, PENG K Y, GUO C L, RAO Z H. Catalytic cracking of biomass pyrolysis tar over char-supported catalysts[J]. Energy Convers Manage,2018,167:81−90. doi: 10.1016/j.enconman.2018.04.094
    [65]
    XIAO X B, MENG X L, LE D D, TAKARADA T. Two-stage steam gasification of waste biomass in fluidized bed at low temperature: parametric investigations and performance optimization[J]. Bioresour Technol,2011,102(2):1975−1981. doi: 10.1016/j.biortech.2010.09.016
    [66]
    CAO J P, HUANG X, ZHAO X Y, WANG B S, MEESUK S, SATO K, WEI X Y, TAKARADA T. Low-temperature catalytic gasification of sewage sludge-derived volatiles to produce clean H2-rich syngas over a nickel loaded on lignite char[J]. Int J Hydrogen Energy,2014,39(17):9193−9199. doi: 10.1016/j.ijhydene.2014.03.222
    [67]
    GUO F Q, PENG K Y, LIANG S, JIA X P, JIANG X C, QIAN L. Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis[J]. Fuel,2019,258:116204. doi: 10.1016/j.fuel.2019.116204
    [68]
    YAO D D, HU Q, WANG D Q, YANG H P, WU C F, WANG X H, CHEN H P. Hydrogen production from biomass gasification using biochar as a catalyst/support[J]. Bioresour Technol,2016,216:159−164. doi: 10.1016/j.biortech.2016.05.011
    [69]
    WU C F. WANG L Z, WILLIAMS P T, SHI J, HUANG J. Hydrogen production from biomass gasification with Ni/MCM-41 catalysts: Influence of Ni content[J]. Appl Catal B: Environ,2011,108−109:6−13.
    [70]
    AZNAR M P, CORELLA J, DELGADO J, LAHOZ J. Improved steam gasification of lignocellulosic residues in a fluidized[J]. Ing Eng Chem Res,1993,32(1):1−10. doi: 10.1021/ie00013a001
    [71]
    GUSTA E, DALAI A K, UDDIN M A, SASAOKA E. Catalytic decomposition of biomass tars with dolomites[J]. Energy Fuels,2009,23:4, 2264−2272.
    [72]
    LI H Y, XU Q L, XUE H S, YANG Y J. Catalytic reforming of the aqueous phase derived from fast-pyrolysis of biomass[J]. Renewable Energy,2009,34(12):2872−2877. doi: 10.1016/j.renene.2009.04.007
    [73]
    FU P, YI W M, LI Z H, BAI X Y, ZHANG A D, LI Y M, LI Z. Investigation on hydrogen production by catalytic steam reforming of maize stalk fast pyrolysis bio-oil[J]. Int J Hydrogen Energy,2014,39(26):13962−13971. doi: 10.1016/j.ijhydene.2014.06.165
    [74]
    MA Z, ZHANG S P, XIE D Y, YANG Y J. A novel integrated process for hydrogen production from biomass[J]. Int J Hydrogen Energy,2014,39(3):1274−1279. doi: 10.1016/j.ijhydene.2013.10.146
    [75]
    YANG C F, CHEN F F, HU R R. Hydrogen production from catalytic steam reforming of bio-oil aqueous fraction over Ni/CeO2-ZrO2 catalysts[J]. Int J Hydrogen Energy,2010,35(21):11693−11699. doi: 10.1016/j.ijhydene.2010.08.083
    [76]
    REMIRO A, VALLE B, AGUAYA A T, BILBAO J, GAYUBO A G. Operating conditions for attenuating Ni/La2O3-αAl2O3 catalyst deactivation in the steam reforming of bio-oil aqueous fraction[J]. Fuel Process Technol,2013,115:222−232. doi: 10.1016/j.fuproc.2013.06.003
    [77]
    BIMBELA F, OLIVA M, RUIZ J, GARCI´A, ARAUZO J. Hydrogen production via catalytic steam reforming of the aqueous fraction of bio-oil using nickel-based coprecipitated catalysts[J]. Int J Hydrogen Energy,2013,38(34):14476−14487. doi: 10.1016/j.ijhydene.2013.09.038
    [78]
    DONG L S, WU C F, LIN H J, SHI J, WILLIAMS P T, HUANG J. Promoting hydrogen production and minimizing catalyst deactivation from the pyrolysis-catalytic steam reforming of biomass on nanosized NiZnAlOx catalysts[J]. Fuel,2017,188:610−620. doi: 10.1016/j.fuel.2016.10.072
    [79]
    JIN F Z, SUN H M, WU C F, LING H J, JIANG Y J, WILLIAMS P T, HUANG J. Effect of calcium addition on Mg-AlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass[J]. Catal Today,2018,309:2−10. doi: 10.1016/j.cattod.2018.01.004
    [80]
    OEMAR U, LI AM, HIDAJAT K, KWAI S. Mechanism and kinetic modeling for steam reforming of toluene on La0.8Sr0.2Ni0.8Fe0.2O3catalyst[J]. AIChE J,2014,60(12):4190−4198. doi: 10.1002/aic.14573
    [81]
    汤文. 高分散Co/C低温催化玉米芯焦油水蒸气重整[D]. 徐州: 中国矿业大学, 2021.

    TANG Wen. Highly dispersed Co/C for catalytic steam reforming of corncob tar at low temperature[D]. Xuzhou: China University of Mining and Technology, 2021.
    [82]
    彭旷野. 稻壳催化热解及其半焦产物催化裂解焦油特性研究[D]. 徐州: 中国矿业大学, 2020.

    PENG Kuan-ye. Study on rice husk catalytic pyrolysis and catalytic cracking of tar over the as-produced char product[D]. Xuzhou: China University of Mining and Technology, 2020.
    [83]
    HUBER G W, SHABAKER J W, DUMESIC J A. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons[J]. Science,2003,300(5628):2075−2077. doi: 10.1126/science.1085597
    [84]
    SHEN D K, GU S, LUO K H, WANG S R, FANG M X. The pyrolytic degradation of wood-derived lignin from pulping process[J]. Bioresour Technol,2010,101:6136−6146. doi: 10.1016/j.biortech.2010.02.078
    [85]
    GILLRT S, AGUEDO M, PETITJEAN L, MORAIS A R C, LOPES A M D C, ŁUKASIK R M, ANASTAS P T. Lignin transformations for high value applications: towards targeted modifications using green chemistry[J]. Green Chem,2017,19(18):4200−4233. doi: 10.1039/C7GC01479A
    [86]
    HUANG Y Q, WEI Z G, QIN Z J, YIN X L, WU C Z. Study on structure and pyrolysis behavior of lignin derived from corncob acid hydrolysis residue[J]. J Anal Appl Pyrolysis,2012,93:153−159. doi: 10.1016/j.jaap.2011.10.011
    [87]
    CAO J, XIAO G, XU X, SHEN D K, JIN B S. Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor[J]. Fuel Process Technol,2013,16:41−47.
    [88]
    林俊明, 岑洁, 李正甲, 杨林颜, 姚楠. Ni基重整催化剂失活机理研究进展[J]. 化工进展,2022,41(1):201−209. doi: 10.16085/j.issn.1000-6613.2021-0310

    LIN Jun-ming, CEN Jie, LI Zheng-jia, YANG Lin-yan, YAO Nan. Development on deactivation mechanism of Ni-based reforming catalysts[J]. Chem Ind Eng Progress,2022,41(1):201−209. doi: 10.16085/j.issn.1000-6613.2021-0310
    [89]
    ASHOK J, DEWANGAN N, DAS S, HONGMANOROM P, WAI M H, TOMISHIGE K, KAWI S. Recent progress in the development of catalysts for steam reforming of biomass tar model reaction[J]. Fuel Process Technol,2020,199:106252. doi: 10.1016/j.fuproc.2019.106252
    [90]
    REN J, LIU Y L. Promoting syngas production from steam reforming of toluene using a highly stable Ni/(Mg, Al)Ox catalyst[J]. Appl Catal B: Environ,2022,300:120743. doi: 10.1016/j.apcatb.2021.120743
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1817) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return