Volume 51 Issue 5
May  2023
Turn off MathJax
Article Contents
LIANG Yu, LI Gui, ZHENG Jun-ning, XU Li-xin, YE Ming-fu, WAN Chao. Preparation of NiPt/SBA-15 nanocatalyst and its catalytic performance for the dehydrogenation of hydrous hydrazine[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 684-692. doi: 10.19906/j.cnki.JFCT.2022072
Citation: LIANG Yu, LI Gui, ZHENG Jun-ning, XU Li-xin, YE Ming-fu, WAN Chao. Preparation of NiPt/SBA-15 nanocatalyst and its catalytic performance for the dehydrogenation of hydrous hydrazine[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 684-692. doi: 10.19906/j.cnki.JFCT.2022072

Preparation of NiPt/SBA-15 nanocatalyst and its catalytic performance for the dehydrogenation of hydrous hydrazine

doi: 10.19906/j.cnki.JFCT.2022072
Funds:  The project was supported by the National Natural Science Foundation of China (22108238, U22A20408), Anhui Provincial Natural Science Foundation (1908085QB68), Major Science and Technology Project of Anhui Province (201903a05020055), China Postdoctoral Science Foundation (2019M662060, 2020T130580), Postdoctoral International Exchange Program(PC2022046), Open Research Funds of Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials (ZD2021007) and Open Research Funds of Jiangxi Province Engineering Research Center of Ecological Chemical Industry (STKF2109).
  • Received Date: 2022-06-25
  • Accepted Date: 2022-09-07
  • Rev Recd Date: 2022-08-26
  • Available Online: 2022-09-08
  • Publish Date: 2023-05-15
  • As the most promising hydrogen storage material, hydrous hydrazine (N2H4·H2O) has attracted extensive attention and interest of researchers. In this paper, NiPt bimetallic supported SBA-15 (mesoporous silica) catalysts with different metal ratios were prepared by a simple impregnation reduction method, and their catalytic hydrous hydrazine dehydrogenation performance was studied. The research results show that Pt and Ni form an alloy during the preparation of the catalyst, the electronic synergistic effect of the two metals can effectively promote the catalytic performance of the catalyst, and the interaction between SBA-15 and the metal active components helps to improve the catalytic performance and cycling stability of catalysts. The activation energy of the Pt6Ni4/SBA-15 catalyst is 45.6 kJ/mol and the TOF value is 2123.3 h−1, which are better than most of the reported catalysts.
  • loading
  • [1]
    HUANG W K, LIU X. The “on-off” switch for on-demand H2 evolution from hydrous hydrazine over Ni8Pt1/C nano-catalyst[J]. Fuel,2022,315:123210. doi: 10.1016/j.fuel.2022.123210
    [2]
    ZHANG Z J, ZHANG S L, YAO Q L, FENG G, ZHU M H, LU Z H. Metal-organic framework immobilized RhNi alloy nanoparticles for complete H2 evolution from hydrazine borane and hydrous hydrazine[J]. Inorg Chem Front,2018,5(2):370−377. doi: 10.1039/C7QI00555E
    [3]
    JAIN P, ANILA K A, VINOD C P. Au based Ni and Co bimetallic core shell nanocatalysts for room temperature selective decomposition of hydrous hydrazine to hydrogen[J]. ChemistrySelect,2019,4(9):2734−2740. doi: 10.1002/slct.201900483
    [4]
    ZHANG M Y, LIU L, LU S, XU L X, AN Y, WAN C. Facile fabrication of NiPt/CNTs as an efficient catalyst for hydrogen production from hydrous hydrazine[J]. ChemistrySelect,2019,4(35):10494−10500. doi: 10.1002/slct.201902762
    [5]
    SINGH S K, LU Z H, XU Q. Temperature-induced enhancement of catalytic performance in selective hydrogen generation from hydrous hydrazine with Ni-based nanocatalysts for chemical hydrogen storage[J]. Eur J Inorg Chem,2011,2011(14):2232−2237. doi: 10.1002/ejic.201100083
    [6]
    ZHOU L, LUO X J, XU L X, WAN C, YE M F. Pt-Ni nanoalloys for H2 generation from hydrous hydrazine[J]. Catalysts,2020,10(8):930. doi: 10.3390/catal10080930
    [7]
    WAN C, ZHOU L, SUN L, XU L X, CHENG D G, CHEN F Q, ZHAN X L, YANG Y R. Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott-Schottky photocatalyst[J]. Chem Eng J,2020,396:125229. doi: 10.1016/j.cej.2020.125229
    [8]
    WAN C, SUN L, XU L X, CHENG D G, CHEN F Q, ZHAN X L, YANG Y R. Novel NiPt alloy nanoparticle decorated 2D layered g-C3N4 nanosheets: A highly efficient catalyst for hydrogen generation from hydrous hydrazine[J]. J Mater Chem A,2019,7(15):8798−8804. doi: 10.1039/C9TA01535C
    [9]
    WANG J, LI W, WEN Y, GU L, ZHANG Y. Rh-Ni-B nanoparticles as highly efficient catalysts for hydrogen generation from hydrous hydrazine[J]. Adv Energy Mater,2015,5(10):1401879. doi: 10.1002/aenm.201401879
    [10]
    ARANISHI K, SINGH A K, XU, Q. Dendrimer-encapsulated bimetallic Pt-Ni nanoparticles as highly efficient catalysts for hydrogen generation from chemical hydrogen storage materials[J]. ChemCatChem,2013,5(8):2248−2252. doi: 10.1002/cctc.201300143
    [11]
    CAO N, YANG L, DAI H M, LIU T, SU J, WU X J, LUO W, CHENG G Z. Immobilization of ultrafine bimetallic Ni-Pt nanoparticles inside the pores of metal-organic frameworks as efficient catalysts for dehydrogenation of alkaline solution of hydrazine[J]. Inorg Chem,2014,53(19):10122−10128. doi: 10.1021/ic5010352
    [12]
    WANG H L, YAN J M, WANG Z L, IIO S, JIANG Q. Highly efficient hydrogen generation from hydrous hydrazine over amorphous Ni0.9Pt0.1/Ce2O3 nanocatalyst at room temperature[J]. J Mater Chem A,2013,1(47):14957−14962. doi: 10.1039/c3ta13259e
    [13]
    JIANG Y Y, DAI H B, ZHONG Y J, CHEN D M, WANG P. Complete and rapid conversion of hydrazine monohydrate to hydrogen over supported Ni-Pt nanoparticles on mesoporous ceria for chemical hydrogen storage[J]. Chem Eur J,2015,21(43):15439−15445. doi: 10.1002/chem.201502421
    [14]
    JIANG Y Y, KANG Q, ZHANG J J, DAI H B, WANG P. High-performance nickel-platinum nanocatalyst supported on mesoporous alumina for hydrogen generation from hydrous hydrazine[J]. J Power Sources,2015,273:554−560. doi: 10.1016/j.jpowsour.2014.09.119
    [15]
    DAI H, DAI H B, ZHONG Y J, KANG Q, SUN L X, WANG P. Kinetics of catalytic decomposition of hydrous hydrazine over CeO2-supported bimetallic Ni-Pt nanocatalysts[J]. Int J Hydrogen Energy,2017,42(9):5684−5693. doi: 10.1016/j.ijhydene.2016.10.160
    [16]
    QIU Y, SHI Q, ZHOU L L, CHEN M H, CHEN C, TANG P P, WALKER G S, WANG P. NiPt nanoparticles anchored onto hierarchical nanoporous N-doped carbon as an efficient catalyst for hydrogen generation from hydrazine monohydrate[J]. ACS Appl Mater Interfaces,2020,12(16):18617−18624. doi: 10.1021/acsami.0c03096
    [17]
    SINGH S K, SINGH A K, ARANISHI K, XU Q. Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage[J]. J Am Chem Soc,2011,133(49):19638−19641. doi: 10.1021/ja208475y
    [18]
    邹爱华, 徐晓梅, 周浪, 林路贺, 康志兵. 石墨烯负载Co-CeOx纳米复合物的制备及其对氨硼烷水解产氢的催化性能[J]. 燃料化学学报,2021,49(9):1371−1378. doi: 10.1016/S1872-5813(21)60085-3

    ZOU Ai-hua, XU Xiao-mei, ZHOU Lang, LIN Lu-he, KANG Zhi-bing. Preparation of graphene-supported Co-CeOx nanocomposites as a catalyst for the hydrolytic dehydrogenation of ammonia borane[J]. J Fuel Chem Technol,2021,49(9):1371−1378. doi: 10.1016/S1872-5813(21)60085-3
    [19]
    TUNÇ N, RAKAP M. Preparation and characterization of Ni-M (M: Ru, Rh, Pd) nanoclusters as efficient catalysts for hydrogen evolution from ammonia borane methanolysis[J]. Renewable Energy,2020,155:1222−1230. doi: 10.1016/j.renene.2020.04.079
    [20]
    MEN Y N, DU X Q, CHENG G Z, LUO W. CeOx-modified NiFe nanodendrits grown on rGO for efficient catalytic hydrogen generation from alkaline solution of hydrazine[J]. Int J Hydrogen Energy,2017,42(44):27165−27173. doi: 10.1016/j.ijhydene.2017.08.214
    [21]
    CHEN J M, ZOU H T, YAO Q L, LUO M H, LI X G, LU Z H. Cr2O3-modified NiFe nanoparticles as a noble-metal-free catalyst for complete dehydrogenation of hydrazine in aqueous solution[J]. Appl Surf Sci,2020,501:144247. doi: 10.1016/j.apsusc.2019.144247
    [22]
    WANG K, YAO Q L, QING S J, LU Z H. La(OH)3 nanosheet-supported CoPt nanoparticles: A highly efficient and magnetically recyclable catalyst for hydrogen production from hydrazine in aqueous solution[J]. J Mater Chem A,2019,7(16):9903−9911. doi: 10.1039/C9TA01066A
    [23]
    SONG F Z, ZHU Q L, XU Q. Monodispersed PtNi nanoparticles deposited on diamine-alkalized graphene for highly efficient dehydrogenation of hydrous hydrazine at room temperature[J]. J Mater Chem A,2015,3(46):23090−23094. doi: 10.1039/C5TA05664K
    [24]
    CHEN Q, DENG L D, WU Z W, WANG F, JIANG X M. Mesoporous silica SBA-15 supported Pt-Ga nanoalloys as an active and stable catalyst for propane dehydrogenation[J]. Ind Eng Chem Res,2022,61(23):7799−7809. doi: 10.1021/acs.iecr.2c00646
    [25]
    KOH K, JEON M, YOON C W, ASEFA T. Formic acid dehydrogenation over Pd NPs supported on amine-functionalized SBA-15 catalysts: structure-activity relationships[J]. J Mater Chem A,2017,5(31):16150−16161. doi: 10.1039/C7TA02040F
    [26]
    HUANG L H, XU B L, YANG L L, FAN Y N. Propane dehydrogenation over the PtSn catalyst supported on alumina-modified SBA-15[J]. Catal Commun,2008,9(15):2593−2597. doi: 10.1016/j.catcom.2008.07.015
    [27]
    DU X Q, DU C, CAI P, LUO W, CHENG G Z. NiPt nanocatalysts supported on boron and nitrogen Co-doped graphene for superior hydrazine dehydrogenation and methanol oxidation[J]. ChemCatChem,2016,8(7):1410−1416. doi: 10.1002/cctc.201501405
    [28]
    XU F, LIU X. Synergistically promoted H2 evolution from dimethylamine-borane and hydrazine monohydrate by simply alloying of Pt/C with Ni[J]. Fuel,2021,304:121433. doi: 10.1016/j.fuel.2021.121433
    [29]
    李振彪. Ni/SBA-15和Ni/Al-SBA-15催化顺酐加氢性能研究[D]. 太原: 山西大学, 2016.

    LI Zhen-biao. Hydrogenation performance of Ni/SBA-15 and Ni/Al-SBA-15 catalysts on maleic anhydride[D]. Taiyuan: Shanxi University, 2016.
    [30]
    郭靖, 范素兵, 高新华, 马清祥, 张建利, 赵天生. Co-Ni-B/SBA-15催化1-辛烯氢甲酰化活性研究[J], 燃料化学学报, 2021, 49(7): 945–951.

    GUO Jing, FAN Su-bing, GAO Xin-hua, MA Qing-xiang, ZHANG Jian-li, ZHAO Tian-sheng. Study on catalytic performance of Co-Ni-B/SBA-15 for hydroformylation of 1-octene[J]. J Fuel Chem Technol, 2021, 49(7): 945–951.
    [31]
    YAO Q L, HE M, HONG X L, ZHANG X L, LU Z H. MoOx-modified bimetallic alloy nanoparticles for highly efficient hydrogen production from hydrous hydrazine[J]. Inorg Chem Front,2019,6(6):1546−1552. doi: 10.1039/C9QI00379G
    [32]
    ZHONG Y J, DAI H B, JIANG Y Y, CHEN D M, ZHU M, SUN L X, WANG P. Highly efficient Ni@Ni-Pt/La2O3 catalyst for hydrogen generation from hydrous hydrazine decomposition: Effect of Ni-Pt surface alloying[J]. J Power Sources,2015,300:294−300. doi: 10.1016/j.jpowsour.2015.09.071
    [33]
    WAN C, ZHOU L, XU S M, JIN B Y, GE X, QIAN X, XU L X, CHEN F Q, ZHAN X L, YANG Y R, CHENG D G. Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid[J]. Chem Eng J,2022,429:132388. doi: 10.1016/j.cej.2021.132388
    [34]
    DU Y S, SU J, LUO W, CHENG G Z. Graphene-supported nickel-platinum nanoparticles as efficient catalyst for hydrogen generation from hydrous hydrazine at room temperature[J]. ACS Appl Mater Interfaces,2015,7(2):1031−1034. doi: 10.1021/am5068436
    [35]
    GUO F, ZOU H T, YAO Q L, HUANG B, LU Z H. Monodispersed bimetallic nanoparticles anchored on TiO2-decorated titanium carbide MXene for efficient hydrogen production from hydrazine in aqueous solution[J]. Renewable Energy,2020,155:1293−1301. doi: 10.1016/j.renene.2020.04.047
    [36]
    ZOU H T, ZHANG S L, HONG X L, YAO Q L, LUO Y, LU Z H. Immobilization of Ni-Pt nanoparticles on MIL-101/rGO composite for hydrogen evolution from hydrous hydrazine and hydrazine borane[J]. J Alloys Compd,2020,835:155426. doi: 10.1016/j.jallcom.2020.155426
    [37]
    CAO N, YANG L, DU C, SU J, LUO W, CHENG G Z. Highly efficient dehydrogenation of hydrazine over graphene supported flower-like Ni-Pt nanoclusters at room temperature[J]. J Mater Chem A,2014,2(35):14344−14347. doi: 10.1039/C4TA02964J
    [38]
    XIA B Q, LIU T, LUO W, CHENG G Z. NiPt-MnOx supported on N-doped porous carbon derived from metal-organic frameworks for highly efficient hydrogen generation from hydrazine[J]. J Mater Chem A,2016,4(15):5616−5622. doi: 10.1039/C6TA00766J
    [39]
    XING W N, TU W G, HAN Z H, HU Y D, MENG Q Q, CHEN G. Template-induced high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution[J]. ACS Energy Lett,2018,3(3):514−519. doi: 10.1021/acsenergylett.7b01328
    [40]
    XU L X, LIU N, HONG B, CUI P, CHENG D G, CHEN F Q, AN Y, WAN C. Nickel-platinum nanoparticles immobilized on graphitic carbon nitride as highly efficient catalyst for hydrogen release from hydrous hydrazine[J]. RSC Adv,2016,6(38):31687−31691. doi: 10.1039/C6RA01335J
    [41]
    ZHANG W, JIAJUNWANG J J, LIU Z W, PI Y B, TAN R. Visible light-driven oxidant-free dehydrogenation of alcohols in water using porous ultrathin g-C3N4 nanosheets[J]. Green Energy Environ,2022,7:712−722. doi: 10.1016/j.gee.2020.11.019
    [42]
    张安琪, 姚淇露, 卢章辉. 水合肼分解产氢催化剂研究进展[J]. 化学学报,2021,79(7):885−902. doi: 10.6023/A21030126

    ZHANG An-qi, YAO Qi-lu, LU Zhang-hui. Recent progress on catalysts for hydrogen evolution from decomposition of hydrous hydrazine[J]. Acta Chim Sin,2021,79(7):885−902. doi: 10.6023/A21030126
    [43]
    SONG F Z, YANG X C, XU Q. Ultrafine bimetallic Pt-Ni nanoparticles achieved by metal-organic framework templated zirconia/porous carbon/reduced graphene oxide: Remarkable catalytic activity in dehydrogenation of hydrous hydrazine[J]. Small Methods,2020,4(1):1900707. doi: 10.1002/smtd.201900707
    [44]
    KARATAS Y, GÜLCAN M, ZAHMAKIRAN M. Silica supported ternary NiRuPt alloy nanoparticles: Highly efficient heterogeneous catalyst for H2 generation via selective decomposition of hydrous hydrazine in alkaline solution[J]. Int J Hydrogen Energy,2020,45(51):27098−27113. doi: 10.1016/j.ijhydene.2020.07.048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1823) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return