Volume 51 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
HAN Na, ZHANG Dong-dong, WU Ting-ting, YANG Lei, LI Hong-qiang, HE Xiao-jun. Preparation of B/N co-doped porous carbon sheets and their potassium storage properties[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 863-872. doi: 10.19906/j.cnki.JFCT.2022075
Citation: HAN Na, ZHANG Dong-dong, WU Ting-ting, YANG Lei, LI Hong-qiang, HE Xiao-jun. Preparation of B/N co-doped porous carbon sheets and their potassium storage properties[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 863-872. doi: 10.19906/j.cnki.JFCT.2022075

Preparation of B/N co-doped porous carbon sheets and their potassium storage properties

doi: 10.19906/j.cnki.JFCT.2022075
Funds:  The project was supported by the National Natural Science Foundation of China (52072002,51872005).
  • Received Date: 2022-07-03
  • Accepted Date: 2022-09-07
  • Rev Recd Date: 2022-08-31
  • Available Online: 2022-09-29
  • Publish Date: 2023-06-15
  • In this paper, two-dimensional B/N co-doped porous carbon sheets (BNCSs) were prepared by one-step carbonization using glycine as carbon source and nitrogen source, boric acid as template and boron source. The boric acid template can be removed by water washing, and the synthesis method is green and environmentally friendly. The short pores in BNCSs shorten the transport distance of potassium ions, and the abundant micropores provide a large number of potassium storage active sites. In addition, the higher B/N doping in BNCSs increases the defect degree of carbon matrix, expands the carbon layer spacing, and is conducive to the adsorption, insertion and de-insertion of potassium ions. The measurement results of potassium ion half cell performance indicate that BNCS800 electrode shows high specific capacity (310 mA·h/g at 0.05 A/g), excellent rate performance (100 mA·h/g at 2 A/g) and good cycle stability (after 1000 cycles at 1 A/g, the capacity retention is 75.9%). This work provides a simple strategy for preparing cathode materials with high capacity and long life.
  • loading
  • [1]
    WU Y M, ZHAO H T, WU Z G, YUE L C, LIANG J, LIU Q, LUO Y L, GAO S. Y, LU S Y, CHEN G, SHI X F, ZHONG B H, GUO X D, SUN X P. Rational design of carbon materials as anodes for potassium-ion batteries[J]. Energy Storage Mater,2021,34:483−507. doi: 10.1016/j.ensm.2020.10.015
    [2]
    ZHU L F, ZHANG Z, LUO J D, ZHANG H, QU Y H, YANG Z Y. Self-templated synthesis of hollow hierarchical porous olive-like carbon toward universal high-performance alkali (Li, Na, K)-ion storage[J]. Carbon,2021,174:317−324. doi: 10.1016/j.carbon.2020.12.029
    [3]
    ZHANG Q F, CHENG X L, WANG C X, RAO A M, LU B A. Sulfur-assisted large-scale synthesis of graphene microspheres for superior potassium-ion batteries[J]. Energy Environ Sci,2021,14(2):965−974. doi: 10.1039/D0EE03203D
    [4]
    WANG B, ZHANG Z Y, YUAN F, ZHANG D, WANG Q J, LI W, LI Z J, WU Y A, WANG W. An insight into the initial coulombic efficiency of carbon-based anode materials for potassium-ion batteries[J]. Chem Eng J,2022,428:131093. doi: 10.1016/j.cej.2021.131093
    [5]
    QIN G H, LIU Y H, LIU F S, XUAN S, HOU L R, LIU B B, YUAN C Z. Magnetic field assisted construction of hollow red P nanospheres confined in hierarchical N-doped carbon nanosheets/nanotubes 3D framework for efficient potassium storage[J]. Adv Energy Mater,2020,11(4):2003429.
    [6]
    ZHONG Y L, DAI W X, LIU D, WANG W, WANG L T, XIE J P, LI R, YUAN Q L, HONG G. Nitrogen and fluorine dual doping of soft carbon nanofibers as advanced anode for potassium ion batteries[J]. Small,2021,17(43):2101576. doi: 10.1002/smll.202101576
    [7]
    WU Z R, ZOU J, SHABANIAN S, GOLOVIN K, LIU J. The roles of electrolyte chemistry in hard carbon anode for potassium-ion batteries[J]. Chem Eng J,2022,427:130972. doi: 10.1016/j.cej.2021.130972
    [8]
    RUAN J F, MO F J, CHEN Z L, LIU M, ZHENG S Y, WU R B, FANG F, SONG Y, SUN D L. Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors[J]. Adv Energy Mater,2020,10(15):1904045. doi: 10.1002/aenm.201904045
    [9]
    LI C, FU Q, ZHAO K J, WANG Y P, TANG H, LI H H, JIANG H B, CHEN L. Nitrogen and phosphorous dual-doped graphene aerogel with rapid capacitive response for sodium-ion batteries[J]. Carbon,2018,139:1117−1125. doi: 10.1016/j.carbon.2018.06.035
    [10]
    WU Y J, SUN Y J, ZHENG J F, RONG J H, LI H Y, NIU L. MXenes: Advanced materials in potassium ion batteries[J]. Chem Eng J,2021,404:126565. doi: 10.1016/j.cej.2020.126565
    [11]
    DENG H L, WANG L, LI S Y, ZHANG M, WANG T, ZHOU J, CHEN M X, CHEN S, CAO J H, ZHANG Q S, ZHU J, LU B A. Radial pores in nitrogen/oxygen dual-doped carbon nanospheres anode boost high-power and ultrastable potassium-ion batteries[J]. Adv Funct Mater,2021,31(51):2107246. doi: 10.1002/adfm.202107246
    [12]
    ZHANG L P, WANG W, LU S F, XIANG Y. Carbon anode materials: A detailed comparison between Na-ion and K-ion batteries[J]. Adv Energy Mater,2021,11(11):2003640. doi: 10.1002/aenm.202003640
    [13]
    JIN Q Z, LI W, WANG K L, LI H M, FENG P Y, ZHANG Z C, WANG W, JIANG K. Tailoring 2D heteroatom-doped carbon nanosheets with dominated pseudocapacitive behaviors enabling fast and high-performance sodium storage[J]. Adv Funct Mater,2020,30(14):1909907. doi: 10.1002/adfm.201909907
    [14]
    ZHANG C C, PAN H G, SUN L X, XU F, OUYANG Y F, ROSEI F. Progress and perspectives of 2D materials as anodes for potassium-ion batteries[J]. Energy Storage Mater,2021,38:354−378. doi: 10.1016/j.ensm.2021.03.007
    [15]
    SHARE K, COHN A P, CARTER R, ROGERS B, PINT C L. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes[J]. ACS Nano,2016,10(10):9738−9744. doi: 10.1021/acsnano.6b05998
    [16]
    JIAN Z L, LUO W, JI X L. Carbon electrodes for K-ion batteries[J]. J Am Chem Soc,2015,137(36):11566−9. doi: 10.1021/jacs.5b06809
    [17]
    LU C, SUN Z T, YU L H, LIAN X Y, YI Y Y, JIE L, LIU Z F, DOU S X, SUN J Y. Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries[J]. Adv Energy Mater,2020,10(28):2001161. doi: 10.1002/aenm.202001161
    [18]
    ZHANG H F, HE X J, WEI F, DONG S A, XIAN N, QIU J S. Moss-covered rock-like hybrid porous carbons with enhanced electrochemical properties[J]. ACS Sustainable Chem Eng,2020,8(8):3065−3071. doi: 10.1021/acssuschemeng.9b05075
    [19]
    LIU Z M, WANG J, JIA X X, LI W L, ZHANG Q F, FAN L, DING H B, YANG H G, YU X Z, LI X K, LU B A. Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries[J]. ACS Nano,2019,13(9):10631−10642. doi: 10.1021/acsnano.9b04893
    [20]
    HE H N, HUANG D, TANG Y G, WANG Q, JI X B, WANG H Y, GUO Z P. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage[J]. Nano Energy,2019,57:728−736. doi: 10.1016/j.nanoen.2019.01.009
    [21]
    XU Z Q, WU M Q, CHEN Z, CHEN C, YANG J, FENG T T, PAEK E, MITLIN D. Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors[J]. Adv Sci,2019,6(12):1802272. doi: 10.1002/advs.201802272
    [22]
    YAN J, LI W, FENG P Y, WANG R X, JIANG M, HAN J, CAO S L, WANG K L, JIANG K. Enhanced Na + pseudocapacitance in a P, S co-doped carbon anode arising from the surface modification by sulfur and phosphorus with C-S-P coupling[J]. J Mater Chem A,2020,8(1):422−432. doi: 10.1039/C9TA11594C
    [23]
    FENG W T, FENG N Y, LIU W, CUI Y P, CHEN C, DONG T T, LIU S, DENG W Q, WANG H L, JIN Y C. Liquid-state templates for constructing B, N, co-doping porous carbons with a boosting of potassium-ion storage performance[J]. Adv Energy Mater,2021,11:2003215. doi: 10.1002/aenm.202003215
    [24]
    TAO L, YANG Y P, WANG H L, ZHENG H L, HAO Y L, SONG W P, SHI J, HUANG M H, MITLIN D. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms[J]. Energy Storage Mater,2020,27:212−225. doi: 10.1016/j.ensm.2020.02.004
    [25]
    CHANG X Q, MA Y F, YANG M, XING T, TANG L Y, CHEN T T, GUO Q B, ZHU X H, LIU J Z, XIA H. In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage[J]. Energy Storage Mater,2019,23:358−366. doi: 10.1016/j.ensm.2019.04.039
    [26]
    WANG B, GU L, YUAN F, ZHANG D, SUN H L, WANG J, WANG Q J, HUAN W, LI Z J. Edge-enrich N-doped graphitic carbon: Boosting rate capability and cyclability for potassium ion battery[J]. Chem Eng J,2022,432:134321. doi: 10.1016/j.cej.2021.134321
    [27]
    TZADIKOV J, LEVY N R, ABISDRIS L, COHEN R, WEITMAN M, KAMINKER L, GOLDBOURT A, EIN-ELI Y, SHALOM M. Bottom-up synthesis of advanced carbonaceous anode materials containing sulfur for Na-ion batteries[J]. Adv Funct Mater,2020,30(19):2000592. doi: 10.1002/adfm.202000592
    [28]
    CAO B, ZHANG Q, LIU H, XU B, ZHANG S L, ZHOU T F, MAO J F, PANG W K, GUO Z P, LI A, ZHOU J S, CHEN X H, SONG H H. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries[J]. Adv Energy Mater,2018,8(25):1801149. doi: 10.1002/aenm.201801149
    [29]
    SHEN C, YUAN K, TIAN T, BAI M H, WANG J G, LI X F, XIE K Y, FU Q G, WEI B. Q. Flexible sub-micro carbon fiber@CNTs as anodes for potassium-ion batteries[J]. ACS Appl Mater Interfaces,2019,11(5):5015−5021. doi: 10.1021/acsami.8b18834
    [30]
    WU Z R, WANG L P, HUANG J, ZOU J, CHEN S L, CHEN H, JIANG C, GAO P, NIU X B. Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries[J]. Electrochim Acta,2019,306:446−453. doi: 10.1016/j.electacta.2019.03.165
    [31]
    ZENG S F, ZHOU X F, WANG B, FENG Y Z, XU R, ZHANG H B, PENG S M, YU Y. Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries[J]. J Mater Chem A,2019,7(26):15774−15781. doi: 10.1039/C9TA03245B
    [32]
    WANG S, LIY Y, MA F T, WU X Z, ZHOU P F, MIAO Z C, GAO P B, ZHUO S P, ZHOU J. Phenolic resin-based carbon microspheres for potassium ion storage[J]. Appl Surface Sci,2020,506:144805. doi: 10.1016/j.apsusc.2019.144805
    [33]
    ZHAO C X, LI H, ZOU Y J, QI Y Y, JIAN Z L, CHEN W. Low-cost carbon materials as anode for high-performance potassium-ion batteries[J]. Mater Lett,2020,262:127147. doi: 10.1016/j.matlet.2019.127147
    [34]
    LIU Q, RAO A M, HAN X, LU B A. Artificial SEI for superhigh-performance K-graphite anode[J]. Adv Sci,2021,8(9):2003639. doi: 10.1002/advs.202003639
    [35]
    WANG S Z, ZHAO H P, LV S Y, JIANG H H, SHAO Y L, WU Y Z, HAO X P, LEI Y. Insight into nickel-cobalt oxysulfide nanowires as advanced anode for sodium-ion capacitors[J]. Adv Energy Mater,2021,11(18):2100408. doi: 10.1002/aenm.202100408
    [36]
    QIAN M M, XU Z F, WANG Z C, WEI B, WANG H, HU S X, LIU L M, GUO L. Realizing few-layer iodinene for high-rate sodium-ion batteries[J]. Adv Mater,2020,32(43):e2004835. doi: 10.1002/adma.202004835
    [37]
    JU Z C, LI P Z, MA G Y, XING Z, ZHUANG Q C, QIAN Y T. Few layer nitrogen-doped graphene with highly reversible potassium storage[J]. Energy Storage Mater,2018,11:38−46. doi: 10.1016/j.ensm.2017.09.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (399) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return