Volume 51 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
HOU Kai-yuan, WANG Yu-hao, JIANG Li-hong, FAN Hao-xi, ZHENG Yan-e. Effects of Ce0.8Cu0.2O2 oxygen carrier-coupled S-1 molecular sieve on chemical-looping performance[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 783-793. doi: 10.19906/j.cnki.JFCT.2022079
Citation: HOU Kai-yuan, WANG Yu-hao, JIANG Li-hong, FAN Hao-xi, ZHENG Yan-e. Effects of Ce0.8Cu0.2O2 oxygen carrier-coupled S-1 molecular sieve on chemical-looping performance[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 783-793. doi: 10.19906/j.cnki.JFCT.2022079

Effects of Ce0.8Cu0.2O2 oxygen carrier-coupled S-1 molecular sieve on chemical-looping performance

doi: 10.19906/j.cnki.JFCT.2022079
Funds:  The project was supported by National Natural Science Foundation of China (21706108) and Applied Basic Research Plan in Yunnan Province of China Project(2018FD032)
  • Received Date: 2022-09-05
  • Accepted Date: 2022-10-12
  • Rev Recd Date: 2022-10-06
  • Available Online: 2022-10-26
  • Publish Date: 2023-06-15
  • Ce0.8Cu0.2O2 oxygen carrier has excellent performance in chemical-looping reforming of methane coupled with CO2 reduction technology. Different mass of S-1 molecular sieve was added to Ce0.8Cu0.2O2 oxygen carrier. The physicochemical properties and reactivity of the carrier were characterized by XRD, BET, XPS, SEM, TEM and CH4-TPR & CO2-TPO. The effect of S-1 molecular sieve on the performance of Ce0.8Cu0.2O2 oxygen carrier in chemical-looping reforming of methane coupled with CO2 reduction was systematically investigated. Compared with Ce0.8Cu0.2O2 oxygen carrier alone, the specific surface area of the composite oxygen carrier increased from 15.44 to 73.27 m2/g after adding 0.3 g S-1 molecular sieve. At the same time, its thermal stability and structural stability were greatly improved. The CH4 conversion rate of composite oxygen carrier with 0.3 g S-1 molecular sieve increased from 38.93% to 56.03%, and the CO yield increased from 1.18 to 2.16 mmol/g during CO2 reduction.
  • loading
  • [1]
    KHALILPOUR R, KARIMI I A. Evaluation of utilization alternatives for stranded natural gas[J]. Energy,2012,40(1):317−328. doi: 10.1016/j.energy.2012.01.068
    [2]
    LI D, NAKAGAWA Y, TOMISHIGE K. Methane reforming to synthesis gas over Ni catalysts modified with noble metals[J]. Appl Catal A: Gen,2011,408(1-2):1−24. doi: 10.1016/j.apcata.2011.09.018
    [3]
    FAROOQI A S, YUSUF M, MOHD ZABIDI N A. A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts[J]. Int J Hydrog Energy,2021,46(60):31024−31040. doi: 10.1016/j.ijhydene.2021.01.049
    [4]
    ANTZARAS A N, HERACLEOUS E, LEMONIDOU A A. Sorption enhanced-chemical looping steam methane reforming: Optimizing the thermal coupling of regeneration in a fixed bed reactor[J]. Fuel Process Technol,2020,208:106513.
    [5]
    CHENG Z, QIN L, FAN J A. New insight into the development of oxygen carrier materials for chemical looping systems[J]. Engineering,2018,4(3):343−351. doi: 10.1016/j.eng.2018.05.002
    [6]
    CHUAYBOON S, ABANADES S, RODAT S. Solar chemical looping reforming of methane combined with isothermal H2O/CO2 splitting using ceria oxygen carrier for syngas production[J]. J Energy Chem,2020,41:60−72. doi: 10.1016/j.jechem.2019.05.004
    [7]
    GOLDWASSER M R, RIVAS M E, LUGO M L. Combined methane reforming in presence of CO2 and O2 over LaFe1−xCoxO3 mixed-oxide perovskites as catalysts precursors[J]. Catal Today,2005,107-108:106−113. doi: 10.1016/j.cattod.2005.07.073
    [8]
    LIANG T-Y, LIN C-Y, CHOU F-C. Gas-phase synthesis of Ni-CeOx hybrid nanoparticles and their synergistic catalysis for simultaneous reforming of methane and carbon dioxide to syngas[J]. J Phys Chem C,2018,122(22):11789−11798. doi: 10.1021/acs.jpcc.8b00665
    [9]
    PASHCHENKO D, MAKAROV I. Carbon deposition in steam methane reforming over a Ni-based catalyst: Experimental and thermodynamic analysis[J]. Energy,2021,222:119993.
    [10]
    RAHBARI A, RAMDIN M, VAN DEN BROEKE L J P. Combined steam reforming of methane and formic acid to produce syngas with an adjustable H2: CO ratio[J]. Ind Eng Chem Res,2018,57(31):10663−10674. doi: 10.1021/acs.iecr.8b02443
    [11]
    WANG B, ZHANG H, XU W. Nature of active sites on Cu-CeO2 catalysts activated by high-temperature thermal aging[J]. ACS Catal,2020,10(21):12385−12392. doi: 10.1021/acscatal.0c03188
    [12]
    ZHOU G, XIE F, DENG L. Supported mesoporous Cu/CeO2−δ catalyst for CO2 reverse water-gas shift reaction to syngas[J]. Int J Hydrog Energy,2020,45(19):11380−11393. doi: 10.1016/j.ijhydene.2020.02.058
    [13]
    ZHOU H, YI Q, WEI G. Reaction performance and lattice oxygen migration of MnFe2O4 oxygen carrier in methane-carbon dioxide reaction system[J]. Int J Hydrog Energy,2020,45(55):30254−30266. doi: 10.1016/j.ijhydene.2020.08.103
    [14]
    GAO N, CHENG M, QUAN C. Syngas production via combined dry and steam reforming of methane over Ni-Ce/ZSM-5 catalyst[J]. Fuel,2020,273:117702.
    [15]
    RAFIEE A, KHALILPOUR K R, MILANI D. CO2 conversion and utilization pathways[M]. Polygeneration with Polystorage for Chemical and Energy Hubs. New York: Academic Press, 2019: 213−245.
    [16]
    ZHANG B, HUYAN Y, WANG J. Synthesis of CeO2 nanoparticles with different morphologies and their properties as peroxidase mimic[J]. J Am Ceram Soc,2019,102(4):2218−2227.
    [17]
    SASTRE D, SERRANO D P, PIZARRO P. Chemical insights on the activity of La1−xSrxFeO3 perovskites for chemical looping reforming of methane coupled with CO2-splitting[J]. J CO2 Util,2019,31:16−26. doi: 10.1016/j.jcou.2019.02.013
    [18]
    WANG C, WANG Y, CHEN M. Recent advances during CH4 dry reforming for syngas production: A mini review[J]. Int J Hydrog Energy,2021,46(7):5852−5874. doi: 10.1016/j.ijhydene.2020.10.240
    [19]
    WEI Q, GAO X, WANG L. Rational design of nickel-based catalyst coupling with combined methane reforming to steadily produce syngas[J]. Fuel,2020,271:117631.
    [20]
    ZHAO K, HE F, HUANG Z. Perovskite-type oxides LaFe1−xCox O3 for chemical looping steam methane reforming to syngas and hydrogen co-production[J]. Appl Energy,2016,168:193−203. doi: 10.1016/j.apenergy.2016.01.052
    [21]
    WEISSENBERGER T, LEONHARDT R, ZUBIRI B A. Synthesis and characterisation of hierarchically structured titanium silicalite-1 zeolites with large intracrystalline macropores[J]. Chemistry,2019,25(63):14430−14440. doi: 10.1002/chem.201903287
    [22]
    YAO X, CHEN L, KONG T. Support effect of the supported ceria-based catalysts during NH3 -SCR reaction[J]. Chin J Catal,2017,38(8):1423−1430. doi: 10.1016/S1872-2067(17)62868-7
    [23]
    伊志豪, 孙杰, 李吉刚. 花球状 CuO / CeO2 材料上 HCN 的催化消除[J]. 材料导报,2021,35(8):8017−8022. doi: 10.11896/cldb.20010081

    YI Zhi-hao, SUN Jie, LI Ji-gang. Catalytic elimination of HCN on curd-like CuO/CeO2 materials[J]. Materials Reports,2021,35(8):8017−8022. doi: 10.11896/cldb.20010081
    [24]
    MATEOS-PEDRERO C, SILVA H, PACHECO TANAKA D A. CuO/ZnO catalysts for methanol steam reforming: The role of the support polarity ratio and surface area[J]. Appl Catal B: Environ,2015,174−175:67−76. doi: 10.1016/j.apcatb.2015.02.039
    [25]
    YANG J, DING H, ZHU Z. Surface modification of CeO2 nanoflakes by low temperature plasma treatment to enhance imine yield: Influences of different plasma atmospheres[J]. Appl Surf Sci,2018,454:173−180. doi: 10.1016/j.apsusc.2018.05.135
    [26]
    ZHANG J, YANG J, WANG J. Surface oxygen vacancies dominated CeO2 as efficient catalyst for imine synthesis: Influences of different cerium precursors[J]. Mol Catal,2017,443:131−138. doi: 10.1016/j.mcat.2017.09.030
    [27]
    XIE Y, WU J, JING G. Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes[J]. Appl Catal B: Environ,2018,239:665−676. doi: 10.1016/j.apcatb.2018.08.066
    [28]
    WNAG X, RODRIGUE Z, JOSE A. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria[J]. J Phys Chem B,2006,110(1):428−34. doi: 10.1021/jp055467g
    [29]
    ZHU Y Y, LIU R L, MA X X. Metal modified hexaaluminates for syngas generation and CO2 utilization via chemical looping[J]. Int J Hydrog Energy,2019,44(21):10218−10231.
    [30]
    SUN Y, YAN N, LI J. The effect of calcination temperature on the electrochemical properties of La0.3Sr0.7Fe0.7Cr0.3O3−x (LSFC) perovskite oxide anode of solid oxide fuel cells (SOFCs)[J]. Sustain Energy Techno,2014,8:92−98. doi: 10.1016/j.seta.2014.08.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (328) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return