JIANG Zao, XU Longjun, LIU Chenglun. Synthesis of Ni-MOF/Zn0.5Cd0.5S and the photocatalytic hydrogen production performance from wastewater[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 97-104. DOI: 10.19906/j.cnki.JFCT.2023051
Citation: JIANG Zao, XU Longjun, LIU Chenglun. Synthesis of Ni-MOF/Zn0.5Cd0.5S and the photocatalytic hydrogen production performance from wastewater[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 97-104. DOI: 10.19906/j.cnki.JFCT.2023051

Synthesis of Ni-MOF/Zn0.5Cd0.5S and the photocatalytic hydrogen production performance from wastewater

  • In order to enhance the photocatalytic hydrogen production performance of Zn0.5Cd0.5S, Ni-MOF modified Zn0.5Cd0.5S composite photocatalyst was prepared by hydrothermal method. The structure and photoelectrochemical properties of the prepared samples were characterized by XRD, SEM, TEM, XPS and other analytical methods. The results show that Zn0.5Cd0.5S mainly presents a nano particle structure, and Ni-MOF is mainly composed of ultra-thin square sheets with a length of about 10 µm and a width of about 9 µm. When Ni-MOF is combined with Zn0.5Cd0.5S, the Zn0.5Cd0.5S nanoparticles deposit on the surface of the Ni-MOF square sheet, and the particle size is significantly reduced, reducing the aggregation of Zn0.5Cd0.5S nanoparticles. In addition, there is a blue shift in the light absorption range for the composite, but still excellent visible light response ability. In the landfill leachate mixed shale gas flowback wastewater, the 15% Ni-MOF/Zn0.5Cd0.5S shows the best photocatalytic hydrogen production performance. Under simulated sunlight, the hydrogen production after 3 h of illumination is up to 1887 µmol. The hydrogen production process satisfies the zero-level reaction, with a hydrogen production rate of 685.9 µmol/h, which is approximately 5.7 times as high as the hydrogen production rate of Zn0.5Cd0.5S.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return