Highly coke-resistant ordered mesoporous Ni/SiC with large surface areas in CO2 reforming of CH4
-
-
Abstract
An ordered mesoporous SiC (SiC-OM) material with high specific surface area (345 m2/g) and narrow pore distribution was prepared by a nanocasting method, and a commercial SiC (49 m2/g, SiC-C) was used as a reference carrier. The Ni/SiC-C and Ni/SiC-OM catalysts were prepared by an incipient wetness impregnation method, and tested in the CO2 reforming of CH4(CRM). The textural properties of fresh and used catalysts were characterized by means of ICP, BET, XRD, H2-TPR, XPS, HRTEM, TG, and Raman. The results suggested the average carbon deposition rate over the Ni/SiC-OM decreased one order of magnitude compared with the Ni/SiC-C during 50 h of CRM reaction, due to the strong interaction between Ni species and SiC-OM support and confinement effect of rigid mesoporous skeleton.
-
-