WANG Bo, WANG Hui, LIU Guang-bo, LI Zhuo, LI Xue-min, WU Jin-hu. Catalytic conversion of dimethyl ether to toluene over the molecular sieves modified with tungsten oxide[J]. Journal of Fuel Chemistry and Technology, 2014, 42(08): 994-1000.
Citation: WANG Bo, WANG Hui, LIU Guang-bo, LI Zhuo, LI Xue-min, WU Jin-hu. Catalytic conversion of dimethyl ether to toluene over the molecular sieves modified with tungsten oxide[J]. Journal of Fuel Chemistry and Technology, 2014, 42(08): 994-1000.

Catalytic conversion of dimethyl ether to toluene over the molecular sieves modified with tungsten oxide

  • The catalytic performance of various zeolites modified with tungsten oxide in the conversion of dimethyl ether (DME) to toluene in the presence of oxygen was investigated in a continuous flow fixed-bed reactor. The results indicated that WO3/HZSM-5 as a catalyst is highly selective in the conversion of DME to toluene; under the optimized conditions, i.e. atmospheric pressure, 290 ℃, and with a DME/O2 mol ratio of 2:1, the conversion of DME is 98.97%, with the selectivity of 39.71% to toluene. The characterization results about the catalyst structure and acidity illustrate that the porous structure of ZSM-5 is suitable for the formation of toluene from DME. The doping of WO3 adjusts the distribution of the surface acid sites and then inhibits the formation of side-products in the presence of oxygen, which is able to enhance the selectivity to toluene.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return