Catalytic performance of SAPO-11/HZSM-5 composite supported Cr2O3 in the transformation of LPG to light olefins
-
-
Abstract
HZSM-5(core)/SAPO-11(shell) composite molecular sieves were hydrothermally synthesized by crystallization of SAPO-11 outside HZSM-5 surface. After loading 10% Cr2O3, the pore distribution, acidity, and catalytic activity of the composite supported Cr2O3 in the transformation of liquefied petroleum gas (LPG) to ethene and propene were investigated. The results showed the HZSM-5 surface was coated with SAPO-11 microcrystalline of different thicknesses. With the increase of crystallization time, the shell thickness of the composite molecular sieves is increased; the mesoporosity and acidity can then be regulated by controlling the shell thickness. The composite supported Cr2O3 exhibits superior activity in the transformation of LPG to olefins than the single molecular sieves or mechanically mixed ones. The Cr2O3 catalyst supported on the composite by crystallization for 12 h gives the highest activity and selectivity to the target products; the feed conversion and the selectivity to ethene and propene are 42.63% and 65.89%, respectively, while the selectivities to CH4 and C5+ are 6.32% and 15.48%, respectively.
-
-