ZHOU Wen-bo, NIU Sheng-li, WANG Dong, LU Chun-mei, HAN Kui-hua, LI Ying-jie, ZHU Ying. Promoting effect of Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction of NO with ammonia, a DFT calculation study[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1224-1235.
Citation: ZHOU Wen-bo, NIU Sheng-li, WANG Dong, LU Chun-mei, HAN Kui-hua, LI Ying-jie, ZHU Ying. Promoting effect of Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction of NO with ammonia, a DFT calculation study[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1224-1235.

Promoting effect of Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction of NO with ammonia, a DFT calculation study

  • The promoting effect of a typical transition metal Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction (SCR) of NO with ammonia was investigated by density functional theory (DFT) calculation. Various doping models of single Ti and double Ti at different Fe sites on the γ-Fe2O3(001) surface were constructed; the surface doping formation energy was calculated, the adsorption characteristics of O2, NO and NH3 molecules on γ-Fe2O3 (001) surface before and after Ti doping were compared, and the reaction mechanism was analyzed. The results illustrate that single Ti atom tends to be doped at octahedral Feoct site, whereas two Ti atoms at two Feoct sites. The adsorption of O2 onto the catalyst surface can be enhanced through the Ti doping; moreover, the enhancement increases with an increase in the doping content of Ti. Both single Ti and double Ti doping inhibit the N-terminal adsorption of NO on the catalyst surface. Ti can enhance the Lewis acid sites and promote the adsorption of NH3, which is beneficial to SCR reaction. The doping of Ti increases the energy barrier of NO2 formation and reduces the SCR reaction of γ-Fe2O3 at low temperature. The doping of Ti can inhibit the formation of NH and N, avoid the excessive oxidation of NH3, and improve the utilization of NH3, which are beneficial to the SCR reaction by suppressing the N2O produced by the E-R mechanism and enhancing the selectivity to N2. As a result, the Ti doping can significantly improve catalytic performance of γ-Fe2O3 in the NH3-SCR of NO.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return