ZHOU Xin-yue, WU Yang-wen, MI Teng-ge, LIU Ji, XU Ming-xin, ZHAO Li, LU Qiang. Interaction mechanism between heavy metals and Ce-doped CaO in flue gas of coal combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1520-1529.
Citation: ZHOU Xin-yue, WU Yang-wen, MI Teng-ge, LIU Ji, XU Ming-xin, ZHAO Li, LU Qiang. Interaction mechanism between heavy metals and Ce-doped CaO in flue gas of coal combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1520-1529.

Interaction mechanism between heavy metals and Ce-doped CaO in flue gas of coal combustion

  • Calcium oxide (CaO) has been widely used as an adsorbent in the purification of heavy metals in coal-fired flue gas. However, the adsorption efficiency is limited and a further modification is needed. The cerium (Ce) modification can redistribute the surface electrons and enhance the chemical activity of CaO. Therefore, the Ce-CaO (100) periodic model was established to study the adsorption mechanism of mercury, selenium, and lead pollutants in the coal-fired flue gas. The results show that, except for the physical adsorption of Hg0 on the Ce-CaO (100) surface, the other heavy metal pollutants are chemically adsorbed on the surface. The Ce-site and O-site are the main active adsorption sites of heavy metal pollutants. Intense charge transfer and strong interaction are observed between adsorption molecules and Ce-CaO (100). Moreover, the adsorption capacity of Ce-doped CaO (100) surface for heavy metal pollutants has been improved, especially the significantly increased capture capacity on Se0, SeO2 and HgCl2.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return