CAO Yue, CHEN Chuan-min, LIU Song-tao, JIA Wen-bo. Study on the Hg0 and NH3 oxidation performance of copper modified attapulgite catalysts[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1171-1178.
Citation: CAO Yue, CHEN Chuan-min, LIU Song-tao, JIA Wen-bo. Study on the Hg0 and NH3 oxidation performance of copper modified attapulgite catalysts[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1171-1178.

Study on the Hg0 and NH3 oxidation performance of copper modified attapulgite catalysts

  • A copper-modified attapulgite (Cu3-ATP) catalyst with both mercury oxidation and ammonia oxidation activities was prepared by an improved wet impregnation method. Several characterization including SEM, H2-TPR and NH3-TPD were performed on it, and its mercury oxidation and ammonia oxidation performance were tested at 150-400 ℃. The results show that the copper species is successfully loaded on ATP surface, which significantly improves the redox ability of the catalyst, increases the strong acid sites and partial strong acid sites on the surface, and thus promotes the oxidation of Hg0 and NH3. HCl plays an important role in Hg0 oxidation. High temperature is not conducive to the Hg0 oxidation reaction, but can promote the oxidation of NH3. At 350 ℃, the oxidation efficiencies of Hg0 and NH3 over Cu3-ATP are both above 90%. Experiments on the influencing factors show that NH3 has an obvious inhibitory effect on mercury oxidation at high space velocity, while low concentrations of Hg0 and HCl have no significant influence on ammonia oxidation. When the gas hourly space velocity (GHSV) is lower than 5×104 h-1, Cu3-ATP can simultaneously oxidize NH3 and Hg0. In addition, the mercury oxidation reaction shows good sulfur resistance and water resistance, but SO2 has a certain inhibitory effect on ammonia oxidation.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return