Volume 48 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
XIN Feng, WEI Shu-zhou, ZHANG Jun-feng, MA Si-ming, ZHAO Yong-chun, ZHANG Jun-ying. Research progress on the removal of mercury from coal-fired flue gas by using non-carbon-based adsorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1409-1420.
Citation: XIN Feng, WEI Shu-zhou, ZHANG Jun-feng, MA Si-ming, ZHAO Yong-chun, ZHANG Jun-ying. Research progress on the removal of mercury from coal-fired flue gas by using non-carbon-based adsorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1409-1420.

Research progress on the removal of mercury from coal-fired flue gas by using non-carbon-based adsorbents

Funds:

the Nationcd Natural Science Foundation of China 42030807

the Natural Science Foundation of Hunan Province, China 2020JJ5590

the Research Foundation of Educational Department of Hunan Province, China 19C0084

the Key Laboratory of Renewable Energy Electric-Technology of Hunan Province 2019ZNDL004

More Information
  • Corresponding author: ZHAO Yong-chun, Tel:027-87542417-8320, E-mail:yczhao@mail.hust.edu.cn
  • Received Date: 2020-09-10
  • Rev Recd Date: 2020-11-03
  • Available Online: 2021-01-23
  • Publish Date: 2020-12-10
  • Mercury emitted from coal-fired power plants seriously harms human health and the ecological environment. In this paper, the effect of pollutant control devices on the removal of mercury from the flue gas in the ultra-low emission coal-fired power plants were first summarized; in particular, the impact of denitration, dedusting, and desulfuration devices after the ultra-low emission retrofits on the mercury removal was highlighted. Subsequently, the research progress on the non-carbon-based adsorbents used in the flue gas cleaning, including fly ash, natural minerals, noble metals, metal oxides, and metal sulfides, was then reviewed; the factors that may influence their performance in mercury adsorption were evaluated. Lastly, based on the current research progress, it is proposed that special attention should be paid in the future to the stability and leaching toxicity of adsorbed mercury as well as the regeneration and recycling of the spent adsorbents.
  • loading
  • [1]
    UN Environment. Global mercury assessment 2018[R]. Switzerland: UN environment programme chemicals and health branch Geneva, 2019.
    [2]
    段钰锋, 朱纯, 佘敏, 姚婷, 赵士林, 汤红健, 黄天放, 刘猛.燃煤电厂汞排放与控制技术研究进展[J].洁净煤技术, 2019, 25(2): 1-17.

    DUAN Yu-feng, ZHU Chun, SHE Min, YAO Ting, ZHAO Shi-lin, TANG Hong-jian, HUANG Tian-fang, LIU Meng. Research progress on mercury emission and control technologies in coal-fired power plants[J]. Clean Coal Technol, 2019, 25(2): 1-17.
    [3]
    PAVLISH J H, SONDREAL E A, MANN M D, OLSON E S, GALBREATH K C, LAUDAL D L, BENSON S A. Status review of mercury control options for coal-fired power plants[J]. Fuel Process Technol, 2003, 82(2/3): 89-165.
    [4]
    周强, 段钰锋, 洪亚光, 朱纯, 佘敏, 韦红旗.活性炭喷射脱汞实验研究和预测模型[J].东南大学学报(自然科学版), 2013, 43(6): 1258-1263.

    ZhOU Qiang, DUAN Yu-feng, HPNG Ya-guang, ZHU Chun, SHE Min, WEI Hong-qi. Experimental study on mercury removal by activated carbon injection and predictive model[J]. J Southeast Univ (Nat Sci Ed), 2013, 43(6): 1258-1263.
    [5]
    PRESTO A A, GRANITE E J. Impact of sulfur oxides on mercury capture by activated carbon[J]. Environ Sci Technol, 2007, 41: 6679-6584.
    [6]
    THOMAS J. FEELEY, JONES A P. An update on DOE/NETL's mercury control technology field testing program[R]. US: Department of Energy, National Energy Technology Laboratory, 2008.
    [7]
    TANG L, LI C, ZHAO L, GAO L, DU X, ZENG J, ZHANG J, ZENG G. A novel catalyst CuO-ZrO2 doped on Cl- activated bio-char for Hg0 removal in a broad temperature range[J]. Fuel, 2018, 218: 366-374.
    [8]
    GÓMEZ-GIMÉNEZ C, BALLESTERO D, JUAN R, RUBIO B, IZQUIERDO M T. Mercury capture by a regenerable sorbent under oxycoal combustion conditions: Effect of SO2 and O2 on capture efficiency[J]. Chem Eng Sci, 2015, 122: 232-239.
    [9]
    陈坤洋, 郭婷婷, 王海刚, 胡冬.超低排放改造后燃煤烟气净化设备协同脱汞潜力分析[J].中国电力, 2018, 51(6): 160-165.

    CHEN Kun-yang, GUO Ting-ting, WANG Hai-gang, HU Dong. Potential analysis of synergetic mercury removal from coal-fired flue gas on purification equipment after retrofitting of ultra-low emission[J]. Electr Power, 2018, 51(6): 160-165.
    [10]
    余靖, 侯博, 黄齐顺, 马大卫, 陈乾, 程靖.超低排放燃煤机组汞的形态分布和排放研究[J].华电技术, 2020, 42(9): 69-75.

    YU Jing, HOU Bo, HUANG Qi-shun, MA Da-wei, CHEN Qian, CHENG Jing. Study on form distribution and emission of mercury from ultra-low emission coal-fired power plants[J]. Huadian Technol, 2020, 42(9): 69-75.
    [11]
    于丽新, 李超, 韩钟国, 刘建民, 姜力行.基于实测的燃煤电厂汞排放特性分析与研究[J].环境工程, 2015, 8: 136-139.

    YU Li-xin, LI Chao, HAN Zhong-guo, LIU Jian-min, JIANG Li-xing. Mercury emission characteristics from coal-fired power plants based on field tests[J]. Environ Eng, 2015, 8: 136-139.
    [12]
    ZHAO S, DUAN Y, YAO T, LIU M, LU J, TAN H, WANG X, WU L. Study on the mercury emission and transformation in an ultra-low emission coal-fired power plant[J]. Fuel, 2017, 199: 653-661.
    [13]
    ZHOU Z J, LIU X W, ZHAO B, CHEN Z G, SHAO H Z, WANG L L, XU M H. Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants[J]. Fuel Process Technol, 2015, 131: 99-108.
    [14]
    杨立国.燃煤烟气汞形态转化及脱除机理研究[D].南京: 东南大学, 2008.

    YANG Li-guo. Transformation and removal mechanism of mercury from coal flue gas[D]. Nanjing: Southeast University, 2008.
    [15]
    李永生, 许月阳, 薛建明. 630MW燃煤超低排放机组SCR对汞的协同作用研究[J].动力工程学报, 2018, 38(11): 914-918.

    LI Yong-sheng, XU Yue-yang, XUE Jian-ming. Study on mercury synergistic effect by SCR catalyst of a 630 MW coal-fired ultra-low emission power unit[J]. J Chin Soc of Power Eng, 2018, 38(11): 914-918.
    [16]
    SVACHULA J, ALEMANY L J, FERLAZZO N, FORZATTI P, TRONCONI E, BREGANI F. Oxidation of SO2 to SO3 over honeycomb DeNoxing catalysts[J]. Ind Eng Chem Res, 1993, 32(5): 826-834.
    [17]
    ZHUANG Y, LAUMB J, LIGGETT R, HOLMES M, PAVLISH J. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. Fuel Process Technol, 2007, 88(10): 929-934.
    [18]
    ZHENG C, WANG L, ZHANG Y, WENG W, ZHAO H, ZHOU J, GAO X. Co-benefit of hazardous trace elements capture in dust removal devices of ultra-low emission coal-fired power plants[J]. J Zhejiang Univ Sci A: Appl Phys Eng, 2018, 19(1): 68-79.
    [19]
    赵毅, 韩立鹏.超低排放燃煤电厂低低温电除尘器协同脱汞研究[J].动力工程学报, 2019, 39(4): 319-323+330.

    ZHAO Y, HAN Li-peng. Synergistic removal of mercury by low-low temperature ESP for ultra-low emission coal-fired power plants[J]. J Chin Soc Power Eng, 2019, 39(4): 319-323+330.
    [20]
    ZHANG Y, YANG J, YU X, SUN P, ZHAO Y, ZHANG J, CHEN G, YAO H, ZHENG C. Migration and emission characteristics of Hg in coal-fired power plant of China with ultra low emission air pollution control devices[J]. Fuel Process Technol, 2017, 158: 272-280.
    [21]
    REYNOLDS J. Multi-pollutant control using membrane-based up-flow wet electrostatic precipitation[R]. US: Office of scientific & technical information, 2004.
    [22]
    周慎学.超低排放系统中湿式电除尘器脱汞特性研究[J].环境工程, 2017, 35: 174-145.

    ZHOU Shen-xue. The research of wesp mercury removal characteristics in ule system[J]. Environ Eng, 2017, 35: 174-145.
    [23]
    陈瑶姬, 孟炜, 胡达清.燃煤电厂汞的排放特性和脱汞技术分析[J].能源研究与管理, 2016, 1: 25-27+44.

    CHEN Yao-ji, MENG Wei, HU Da-qing. Mercury emission characteristic and removal technical analysis in coal-fired power plant[J]. Energy res manage, 2016, 1: 25-27+44.
    [24]
    崔立明, 黄志杰, 莫华, 朱杰, 姜岸, 黄茹.不同超低排放技术路线的协同脱汞实测与研究[J].中国电力, 2017, 50(10): 136-139+143.

    CUI Li-ming, HUANG Zhi-jie, MO Hua, ZHU Jie, JIANG An, HUANG Ru. Test and study on synergic mercury removal performance of environmental protection facilities at ultra-low pollutants emission[J]. Electr Power, 2017, 50(10): 136-139+143.
    [25]
    李少华, 徐英健, 王虎, 白章. WFGD系统脱硫及脱汞特性模拟研究[J].锅炉技术, 2014, 45(6): 72-76.

    LI Shao-hua, XU Ying-jian, WANG Hu, BAI Zhang. Simulation study on the take off mercury and sulfur performance in the wet flue gas desulfurization system[J]. Boiler Technol, 2014, 45(6): 72-76.
    [26]
    ZHAO Y, ZHANG J, LIU J, DÍAZ-SOMOANO M, ABAD-VALLE P, MARTÍNEZ-TARAZONA M R, ZHENG C. Experimental study on fly ash capture mercury in flue gas[J]. Sci China Technol Sci, 2010, 53(4): 976-983.
    [27]
    LÓPEZ-ANTÓN M A, ABAD-VALLE P, DÍAZ-SOMOANO M, SUÁREZ-RUIZ I, MARTÍNEZ-TARAZONA M R. The influence of carbon particle type in fly ashes on mercury adsorption[J]. Fuel, 2009, 88(7): 1194-1200.
    [28]
    ABAD-VALLE P, LOPEZ-ANTON M A, DIAZ-SOMOANO M, MARTINEZ-TARAZONA M R. The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury[J]. Chem Eng J, 2011, 174(1): 86-92.
    [29]
    CAI J, SHEN B, LI Z, CHEN J, HE C. Removal of elemental mercury by clays impregnated with KI and KBr[J]. Chem Eng J, 2014, 241: 19-27.
    [30]
    LI M, WANG L, CHEN J Y, JIANG Y L, WANG W J. Adsorption performance and mechanism of bentonite modified by ammonium bromide for gas-phase elemental mercury removal[J]. J Fuel Chem Technol, 2014, 42(10): 1266-1272.
    [31]
    LEE J Y, JU Y, KEENER T C, VARMA R S. Development of cost-effective noncarbon sorbents for Hg0 removal from coal-fired power plants[J]. Environ Sci Technol, 2006, 40(8): 2714-2720.
    [32]
    HRDLICKA J A, SEAMES W S, MANN M D, MUGGLI D S, HORABIK C A. Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters[J]. Environ Sci Technol, 2008, 42(17): 6677-6682.
    [33]
    ZHAO Y, MANN M D, PAVLISH J H, MIBECK B A F, DUNHAM G E, OLSON E S. Application of gold catalyst for mercury oxidation by chlorine[J]. Environ Sci Technol, 2006, 40(5): 1603-1608.
    [34]
    WU S, OZAKI M, UDDIN M, SASAOKA E. Development of iron-based sorbents for Hg0 removal from coal derived fuel gas: Effect of hydrogen chloride[J]. Fuel, 2008, 87(4/5): 467-474.
    [35]
    QIAO S, CHEN J, LI J, QU Z, LIU P, YAN N, JIA J. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/Alumina[J]. Ind Eng Chem Res, 2009, 48(7): 3317-3322.
    [36]
    WEN X, LI C, FAN X, GAO H, ZHANG W, CHEN L, ZENG G, ZHAO Y. Experimental study of gaseous elemental mercury removal with CeO2/γ-Al2O3[J]. Energy Fuels, 2011, 25(7): 2939-2944.
    [37]
    LIU W, XU H, LIAO Y, QUAN Z, LI S, ZHAO S, QU Z, YAN N. Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas[J]. Fuel, 2019, 235: 847-854.
    [38]
    LI H, ZHU L, WANG J, LI L, SHIH K. Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas[J]. Environ Sci Technol, 2016, 50(17): 9551-9557.
    [39]
    MEI J, WANG C, KONG L, LIU X, HU Q, ZHAO H, YANG S. Outstanding performance of recyclable amorphous MoS3 supported on TiO2 for capturing high concentrations of gaseous elemental mercury: Mechanism, kinetics, and application[J]. Environ Sci Technol, 2019, 53(8): 4480-4489.
    [40]
    LIU H, YOU Z, YANG S, LIU C, XIE X, XIANG K, WANG X, YAN X. High-efficient adsorption and removal of elemental mercury from smelting flue gas by cobalt sulfide[J]. Environ Sci Pollut Res, 2019, 26(7): 6735-6744.
    [41]
    ZHAO Y, ZHANG J, LIU J, DIAZ-SOMOANO M, ABAD-VALLE P, MARTINEZ-TARAZONA M, ZHENG C. Experimental study on fly ash capture mercury in flue gas[J]. Sci China Technol Sci, 2010, 53(4): 976-983.
    [42]
    WANG F, WANG S, MENG Y, ZHANG L, WU Q, HAO J. Mechanisms and roles of fly ash compositions on the adsorption and oxidation of mercury in flue gas from coal combustion[J]. Fuel, 2016, 163: 232-239.
    [43]
    ABAD-VALLE P, LOPEZ-ANTON M A, DIAZ-SOMOANO M, JUAN R, RUBIO B, GARCIA J R, KHAINAKOV S A, MARTÍNEZ-TARAZONA M R. Influence of iron species present in fly ashes on mercury retention and oxidation[J]. Fuel, 2011, 90(8): 2808-2811.
    [44]
    YANG J, ZHAO Y, ZHANG S, LIU H, CHANG L, MA S, ZHANG J, ZHENG C. Mercury removal from flue gas by magnetospheres present in fly ash: Role of iron species and modification by HF[J]. Fuel Process Technol, 2017, 167: 263-270.
    [45]
    ZHANG Y, DUAN W, LIU Z, CAO Y. Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor[J]. Fuel, 2014, 128: 274-280.
    [46]
    GU Y, ZHANG Y, LIN L, XU H, ORNDORFF W, PAN W P. Evaluation of elemental mercury adsorption by fly ash modified with ammonium bromide[J]. J Therm Anal Calorim, 2015, 119(3): 1663-1672.
    [47]
    WANG S, ZHANG Y, GU Y, WANG J, LIU Z, ZHANG Y, CAO Y, ROMERO C E, PAN W P. Using modified fly ash for mercury emissions control for coal-fired power plant applications in China[J]. Fuel, 2016, 181: 1230-1237.
    [48]
    刘芳芳, 张军营, 赵永椿, 郑楚光.金属氧化物改性凹凸棒石脱除烟气中的单质汞[J].燃烧科学与技术, 2014, 20(6): 553-557.

    LIU Fang-fang, ZHANG Jun-ying, ZHAO Yong-chun, ZHENG Chu-guang. Mercury removal from flue gas by metal oxide-loaded attapulgite mineral sorbent[J]. J Combust Sci Technol, 2014, 20(6): 553-557.
    [49]
    SHI D, LU Y, TANG Z, HAN F, CHEN R, XU Q. Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite[J]. Korean J Chem Eng, 2014, 31(8): 1405-1412.
    [50]
    施冬雷, 乔仁静, 许琦.酸改性凹凸棒土的制备及其脱汞性能[J].合成化学, 2015, 23(8): 720-724.

    SHI Dong-lei, QIAO Ren-jing, XU Qi. Preparation of acid modified attapulgite and its performance of mercury removal[J]. Chin J Synth Chem, 2015, 23(8): 720-724.
    [51]
    LIU H, YANG J, TIAN C, ZHAO Y, ZHANG J. Mercury removal from coal combustion flue gas by modified palygorskite adsorbents[J]. App Clay Sci, 2017, 147: 36-43.
    [52]
    丁峰, 张军营, 赵永椿, 郑楚光.硫改性硅酸盐吸附剂脱汞性能的实验研究[J].华中科技大学学报(自然科学版), 2011, 39(11): 116-119.

    DING Feng, ZHANG Jun-ying, ZHAO Yong-chun, ZHENG Chu-guang. Removal of mercury vapor with sulfur-impregnated silicate sorbents[J]. J Huazhong Univ Sci Technol (Nat Sci Ed), 2011, 39(11): 116-119.
    [53]
    HE C, SHEN B, CHEN J. Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs[J]. Environ Sci Technol, 2014, 48(14): 7891-7898.
    [54]
    何川, 沈伯雄, 蔡记, 陈建宏, 李卓.铈锰负载钛基柱撑黏土脱除单质汞的研究[J].工程热物理学报, 2014, 35(10): 2088-2092.

    HE Chuan, SHEN Bo-xiong, CAI Ji, CHEN Jian-hong, LI Zhuo. Removal of elemental mercury from flue gas by Ce-Mn modified Titania-pillared clays[J]. J Eng Thermophys, 2014, 35(10): 2088-2092.
    [55]
    HRDLICKA J A, SEAMES W S, MANN M D. Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters[J]. Environ Sci Technol, 2008, 42(17): 6677-6682.
    [56]
    MERCEDES DIAZ-SOMOANO, M. ROSA MARTINEZ-TARAZONA J R-P, ROBERTO GARCIA, LOPEZ-ANTON M A. Development of gold nanoparticle-doped activated carbon sorbent for elemental mercury[J]. Energy Fuels, 2011, 25(5): 2022-2027.
    [57]
    IZQUIERDO M T, BALLESTERO D, JUAN R, GARCIA-DIEZ E, RUBIO B, RUIZ C, PINO M R. Tail-end Hg capture on Au/carbon-monolith regenerable sorbents[J]. J Hazard Mater, 2011, 193: 304-310.
    [58]
    XIE Y, YAN B, TIAN C, LIU Y, LIU Q, ZENG H. Efficient removal of elemental mercury (Hg0) by SBA-15-Ag adsorbents[J]. J Mater Chem A, 2014, 2(42): 17730-17734.
    [59]
    LUO G, YAO H, XU M, CUI X, CHEN W, GUPTA R, XU Z. Carbon nanotube-silver composite for mercury capture and analysis[J]. Energy Fuels, 2010, 24(1): 419-426.
    [60]
    YANG S, GUO Y, YAN N, WU D, HE H, XIE J, QU Z, JIA J. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Appl Catal B: Environ, 2011, 101(3/4): 698-708.
    [61]
    YANG S, GUO Y, YAN N, WU D, HE H, QU Z, JIA J. Elemental mercury capture from flue gas by magnetic Mn-Fe spinel: effect of chemical heterogeneity[J]. Ind Eng Chem Res, 2011, 50(16): 9650-9656.
    [62]
    XIONG S, XIAO X, HUANG N, DANG H, LIAO Y, ZOU S, YANG S. Elemental mercury oxidation over Fe-Ti-Mn spinel: performance, mechanism, and reaction kinetics[J]. Environ Sci Technol, 2017, 51(1): 531-539.
    [63]
    李扬, 刘冰, 杨赫, 杨大伟, 胡浩权. MnOx-TiO2吸附剂对燃煤烟气中汞的脱除[J].燃料化学学报, 2020, 48(5): 513-524.

    LI Yang, LIU Bing, YANG He, YANG Da-wei, HU Hao-quan. Removal of elemental mercury (Hg0) from simulated flue gas over MnOx-TiO2 sorbents[J]. J Fuel Chem Technol, 2020, 48(5): 513-524.
    [64]
    CIMINO S, SCALA F. Removal of elemental mercury by MnOx catalysts supported on TiO2 or Al2O3[J]. Ind Eng Chem Res, 2015, 55(18): 5133-5138.
    [65]
    QIAO S, CHEN J, LI J, QU Z, LIU P, YAN N, JIA J. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/Alumina.[J]. Ind Eng Chem Res, 2009, 48: 3317-3322.
    [66]
    LI Y, CHENG H, LI D, QIN Y, XIE Y, WANG S. WO3/CeO2-ZrO2, a promising catalyst for selective catalytic reduction (SCR) of NOx with NH3 in diesel exhaust[J]. Chem Commun, 2008, 12: 1470-1472.
    [67]
    WAN Q, DUAN L, HE K, LI J. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas[J]. Chem Eng J, 2011, 170(2/3): 512-517.
    [68]
    HUA X Y, ZHOU J S, LI Q, LUO Z Y, CEN K F. Gas-phase elemental mercury removal by CeO2 impregnated activated coke[J]. Energy Fuels, 2010, 24(10): 5426-5431.
    [69]
    MANCEAU A, MERKULOVA M, MURDZEK M, BATANOVA V, BARAN R, GLATZEL P, SAIKIA B K, PAKTUNC D, LEFTICARIU L. Chemical forms of mercury in pyrite: Implications for predicting mercury releases in acid mine drainage settings[J]. Environ Sci Technol, 2018, 52(18): 10286-10296.
    [70]
    SUN R, ZHU H, SHI M, LUO G, XU Y, LI X, YAO H. Preparation of fly ash adsorbents utilizing non-thermal plasma to add S active sites for Hg0 removal from flue gas[J]. Fuel, 2020, 266: 116936.
    [71]
    ZHAO H, MU X, YANG G, GEORGE M, CAO P, FANADY B, RONG S, GAO X, WU T. Graphene-like MoS2 containing adsorbents for Hg0 capture at coal-fired power plants[J]. Appl Energy, 2017, 207: 254-264.
    [72]
    KONG L, ZOU S, MEI J, GENG Y, ZHAO H, YANG S. Outstanding resistance of H2S-modified Cu/TiO2 to SO2 for capturing gaseous Hg(0) from nonferrous metal smelting flue gas: Performance and reaction mechanism[J]. Environ Sci Technol, 2018, 52(17): 10003-10010.
    [73]
    LIAO Y, XU H, LIU W, NI H, ZHANG X, ZHAI A, QUAN Z, QU Z, YAN N. One step interface activation of ZnS using cupric ions for mercury recovery from nonferrous smelting flue gas[J]. Environ Sci Technol, 2019, 53(8): 4511-4518.
    [74]
    YANG Z, LI H, FENG S, LI P, LIAO C, LIU X, ZHAO J, YANG J, LEE P H, SHIH K. Multiform sulfur adsorption centers and copper-terminated active sites of nano-CuS for efficient elemental mercury capture from coal combustion flue gas[J]. Langmuir, 2018, 34(30): 8739-8749.
    [75]
    杨泽群, 施凯闵, 李海龙, 杨建平, 赵洁霞, 冯世壕.纳米硫化铜烟气脱汞及其机理研究[J].工程热物理学报, 2019, 40(12): 2946-2950.

    YANG Zhe-qun, SHI Kai-min, LI Hai-long, YANG Jian-ping, ZHAO Jie-xia, FENG Shi-hao. An experimental and mechanistic study on the elemental mercury removal over nano-sized copper sulfide[J]. J Eng Thermophys, 2019, 40(12): 2946-2950.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (457) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return