YE Yu-ling, FU Meng-qian, CHEN Hong-lin, ZHANG Xiao-ming. Effect of acidity on the catalytic performance of ZSM-5 zeolites in the synthesis of trioxane from formaldehyde[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 311-320.
Citation: YE Yu-ling, FU Meng-qian, CHEN Hong-lin, ZHANG Xiao-ming. Effect of acidity on the catalytic performance of ZSM-5 zeolites in the synthesis of trioxane from formaldehyde[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 311-320.

Effect of acidity on the catalytic performance of ZSM-5 zeolites in the synthesis of trioxane from formaldehyde

  • ZSM-5 zeolite is considered as an effective catalyst in the synthesis of trioxane from formaldehyde. In this work, a series of ZSM-5 zeolites with different SiO2/Al2O3 molar ratios were used in the synthesis of trioxane from formaldehyde; through characterization by XRF, XRD, SEM, NH3-TPD, Py-FTIR and 27Al MAS NMR, the effect of acidity including the Brønsted and Lewis acid sites on the catalytic performance of ZSM-5 zeolites in the trioxane synthesis was investigated. The results indicate that the ZSM-5-250 zeolite with a SiO2/Al2O3 molar ratio of 250 exhibits excellent catalytic performance in the synthesis of trioxane. The ZSM-5-250 zeolite owns sufficient amount of Brønsted acid sites which are active for the synthesis of formaldehyde to trioxane; meanwhile, it has few Lewis acid sites and can then effectively inhibit various side-reactions like the Cannizzaro or Tishchenko reactions. Moreover, the ZSM-5-250 zeolite displays high stability with a single-pass lifetime of 114 h and can be regenerated easily through calcination at 550℃.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return