WANG Li-bao, WANG Dong-zhe, ZHANG Lei, QING Shao-jun, HAN Jiao, ZHANG Cai-shun, GAO Zhi-xian, ZHANG Hai-juan, FENG Xu-hao. Influence of cerium sources on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2020, 48(7): 852-859.
Citation: WANG Li-bao, WANG Dong-zhe, ZHANG Lei, QING Shao-jun, HAN Jiao, ZHANG Cai-shun, GAO Zhi-xian, ZHANG Hai-juan, FENG Xu-hao. Influence of cerium sources on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2020, 48(7): 852-859.

Influence of cerium sources on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol

  • CeO2 support was synthesized by precipitation method and used to prepare CuO/CeO2 catalyst using impregnation method. The effects of cerium sources (Ce(NO3)3·6H2O, CeCl3·6H2O, Ce(NH4)2(NO3)6 and Ce(SO4)2·4H2O) on the catalytic performance of CuO/CeO2 catalyst were investigated. XRD, SEM, N2O titration, BET and H2-TPR were used to study the structure and properties of the catalysts. The CuO/CeO2 catalysts with different cerium sources have obvious differences in Cu specific surface area, reduction performance and interaction between active component and support. Moreover, CuO/CeO2 catalyst prepared with Ce(NO3)3·6H2O has large Cu specific surface area, low reduction temperature and strong interaction between CeO2 support and CuO and shows better catalytic activity in methanol steam reforming. The methanol conversion is 100% at reaction temperature of 553 K, water/methanol ratio in feed of 1.2 and methanol water gas hourly space velocity of 1760 h-1. Besides, the CO molar content in reformed gas is 0.84%.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return