WANG Ji-feng, WANG Hui-min, ZHANG Ya-qing, ZHANG Qiu-lin, NING Ping. Promotion effect of tungsten addition on N2 selectivity of MnOx-Fe2O3 for NH3-SCR[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 814-822.
Citation: WANG Ji-feng, WANG Hui-min, ZHANG Ya-qing, ZHANG Qiu-lin, NING Ping. Promotion effect of tungsten addition on N2 selectivity of MnOx-Fe2O3 for NH3-SCR[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 814-822.

Promotion effect of tungsten addition on N2 selectivity of MnOx-Fe2O3 for NH3-SCR

  • A series of tungsten modified MnOx-Fe2O3 catalysts with different tungsten contents were prepared by sol-gel method. The influence of tungsten on N2 selectivity of NH3-SCR reaction was investigated particularly. Physical and chemical properties of the catalysts were characterized by means of XRD, BET, XPS, H2-TPR, Raman and in situ DRIFTS. The results showed that N2 selectivity of NH3-SCR at high temperature was significantly improved by introducing tungsten. NH3-SCR possessed the best catalytic performance when the tungsten content was 15% (mass ratio), as well as N2O concentration was less than 0.003% within the range of 50-250℃. The primary causes were the phase change from α-Fe2O3 to γ-Fe2O3 due to the introduction of appropriate amount of WO3. Besides, the interaction between tungsten and manganese formed a new amorphous MnWO4 and obtained a large specific surface area. In addition, the ratio of Mn4+/(Mn3++Mn4+) decreased while the content of Fe2+ and surface chemical adsorption oxygen (Oα) increased, thus the oxidability of the catalyst was reduced. Meanwhile, tungsten doping enhanced the content and strength of Lewis acid sites on the surface of catalysts at high temperatures. Moreover, the adsorption of NH3 was enhanced, thus, NH3-SCR reaction was accelerated. The doping of WO3 inhibited the deep oxidation of NO2 to form nitrate species, reduced the content of by-product N2O produced by nitrate species reduction, and significantly improved the NH3-SCR activity and N2 selectivity of WO3-MnOx-Fe2O3 catalyst at experimental temperature.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return