Volume 46 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
YANG Jian-guo, YANG Wei-ying, ZHENG Fang-dong, ZHAO Hong. Effects of NH3 and SO3 on the generation of ammonium bisulfate and ammonium sulfate[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 92-98.
Citation: YANG Jian-guo, YANG Wei-ying, ZHENG Fang-dong, ZHAO Hong. Effects of NH3 and SO3 on the generation of ammonium bisulfate and ammonium sulfate[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 92-98.

Effects of NH3 and SO3 on the generation of ammonium bisulfate and ammonium sulfate

Funds:

the Zhejiang Provincial Natural Science Foundation of China LY15E060002

More Information
  • Corresponding author: ZHAO Hong, Tel: 0571-87951322, E-mail: zhaohong@zju.edu.com
  • Received Date: 2017-08-01
  • Rev Recd Date: 2017-10-19
  • Available Online: 2021-01-23
  • Publish Date: 2018-01-10
  • In order to study the influence of reactant concentration on the formation of ammonium bisulfate and ammonium sulfate, a simulating flue gas system with a more accurate composition of SO3 was established. The starting temperature of ammonium bisulfate is about 230-270℃ and the peak temperature is about 180-240℃ under the experimental condition. The starting temperature and peak temperature of ammonium sulfate are about 40℃ lower than that of ammonium bisulfate. The formation of ammonium bisulfate is obviously higher than that of ammonium sulfate. With different concentration and molar ratio of NH3 and SO3, the formation rate of ammonium bisulfate is about 64%-90%, about 6-10 times of that of ammonium sulfate with about 6%-15% at 120℃. The increase of reactant concentration can promote the formation of both ammonium bisulfate and ammonium sulfate. And SO3 is more conducive to the formation of ammonium bisulfate than NH3. Further analysis shows that the variation curve of the generation fraction of ammonium bisulfate and ammonium sulfate with temperature presents a single peak. As the reactant concentration increases, the temperature range at which the peak is located increases gradually.
  • loading
  • [1]
    GB13223-2011, 火电厂大气污染物排放标准[S].

    GB13223-2011, Emission standard of air pollutants for thermal power plants[S].
    [2]
    中华人民共和国国家发展和改革委员会. 煤电节能减排升级改造行动计划[EB/OL]. http://bgt.ndrc.gov.cn/zcfb/201409/t20140919_626242.html, 2014-09-12.
    [3]
    陈进生.电厂烟气脱硝技术——选择性催化还原法[M].北京:中国电力出版社, 2008.

    CHEN Jin-sheng. Flue Gas Denitrification Technology in Power Plant-Selective Catalytic Reduction[M]. Beijing:China Electric Power Press, 2008.
    [4]
    李俊华, 杨恂, 常化振.烟气催化脱硝关键技术研发及应用[M].北京:科学出版社, 2015.

    LI Jun-hua, YANG Xun, CHANG Hua-zhen. Development and Application of Key Technologies for Catalytic Denitrification of Flue Gas[M]. Beijing:Science Press, 2015.
    [5]
    马双忱, 金鑫, 孙云雪, 崔基伟. SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J].热力发电, 2010, 39(8):12-17. http://www.doc88.com/p-61063976570.html

    MA Shuang-chen, JIN Xin, SUN Yun-xue, CUI Ji-wei. The formation mechanism of ammonium bisulfate in SCR flue gas denitrification progress and control thereof[J]. Therm Power Gener, 2010, 39(8):12-17. http://www.doc88.com/p-61063976570.html
    [6]
    WILBURN R T, WRIGHT T L. SCR ammonia slip distribution in coal plant effluents and dependence upon SO3[J]. Powerplant Chem, 2004, 6(5):295-304.
    [7]
    蔡明坤.装有脱硝系统锅炉用回转式预热器设计存在问题和对策[J].锅炉技术, 2005, 36(4):8-12, 77. http://www.cqvip.com/QK/97761X/200503/20287859.html

    CAI Ming-kun. The problem and solution in air preheater design for boilers with de NOx equipments[J]. Bolier Technol, 2005, 36(4):8-12, 77. http://www.cqvip.com/QK/97761X/200503/20287859.html
    [8]
    FARTHING W E, WALSH P M. Identification of (and responses to) potential effects of SCR and wet scrubbers on submicron particulate emissions and plum characteristics[R]. Alabama: Southern Research Institute, 2004.
    [9]
    梁登科. 脱硝过程伴生硫酸氢氨对于烟气灰颗粒性质影响的实验研究[D]. 济南: 山东大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10422-1014309904.htm

    LIANG Deng-ke. Experimental research on the effects to flue ash particles characteristics of NH4HSO4 generating during the denitrification process[D]. Jinan: Shandong University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10422-1014309904.htm
    [10]
    陆建伟, 曹志勇, 李辉.燃煤机组烟气脱硝设施建设和运行情况及存在问题浅析[J].电力科技与环保, 2013, 29(5):4-7. http://www.cqvip.com/QK/94798A/201305/47446839.html

    LU Jian-wei, CAO Zhi-yong, LI Hui. Problems analysis in construction and operation of coal-fired units flue gas denitrification facilities[J]. Electric Power Technol and Environ Prot, 2013, 29(5):4-7. http://www.cqvip.com/QK/94798A/201305/47446839.html
    [11]
    罗闽, 赵伶玲, 李偲宇.空气预热器硫酸氢铵积灰的数值研究[J].动力工程学报, 2016, 36(11):883-888. doi: 10.3969/j.issn.1674-7607.2016.11.005

    LUO Min, ZHAO Ling-ling, LI Si-yu. Numerical simulation of ash deposition with adhesion of NH4HSO4 in an air preheater[J]. Chin J Power Eng, 2016, 36(11):883-888. doi: 10.3969/j.issn.1674-7607.2016.11.005
    [12]
    Schreifels J J, WANG S X, HAO J M. Design and operational considerations for selective catalytic reduction technologies at coal-fired boilers[J]. Front Energy, 2012, 06(1):98-105. doi: 10.1007/s11708-012-0171-4
    [13]
    赵宗让.电厂锅炉SCR烟气脱硝系统设计优化[J].中国电力, 2005, 38(11):69-74. doi: 10.3969/j.issn.1004-9649.2005.11.017

    ZHAO Zong-rang. Design optimization of SCR system for coal-fired boilers[J]. Electric Power, 2005, 38(11):69-74. doi: 10.3969/j.issn.1004-9649.2005.11.017
    [14]
    ZHAO Y, HU J, HUA L. Ammonia storage and slip in a urea selective catalytic reduction catalyst under steady and transient conditions[J]. Ind Eng Chem Res, 2011, 50(21):11863-11871. doi: 10.1021/ie201045w
    [15]
    LEI Z G, WEN C P, CHEN B H. Optimization of internals for selective catalytic reduction (SCR) for no removal[J]. Environ Sci Technol, 2011, 45(8):3437-3444. doi: 10.1021/es104156j
    [16]
    朱崇兵, 金保升, 李锋, 翟俊霞. SO2氧化对SCR法烟气脱硝的影响[J].锅炉技术, 2008, 39(3):68-72. http://www.oalib.com/paper/4967411

    ZHU Chong-bing, JIN Bao-sheng, LI Feng, ZHAI Jun-xia. Effect of SO2 oxidation on SCR-DeNOx[J]. Bolier Technol, 2008, 39(3):68-72. http://www.oalib.com/paper/4967411
    [17]
    王杭州. SCR对脱硝效率及SO2转化影响分析[J].电力科学与工程, 2008, 24(5):17-21. http://www.oalib.com/paper/4968611

    WANG Hang-zhou. The influence of SCR on denitrification efficiency and SO2 conversion[J]. Electric Power Sci Eng, 2008, 24(5):17-21. http://www.oalib.com/paper/4968611
    [18]
    BURKE J M, JOHNSON K L. Ammonium sulfate and bisulfate formation in air preheaters[J]. Bmj British Med J, 1982, 329(7463):446. https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryID=37706
    [19]
    Ando J. NOx abatement for stationary sources in Japan[R]. USEPA, 1976.
    [20]
    CHOTHANI C, MOREY R. Ammonium bisulfate (ABS) measurement for SCR NOx control and air heater protection[C]//Baltimore, MD: 2008.
    [21]
    MENASHA J, DUNN-RANKIN D, MUZIO L, STALLINGS J. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater[J]. Fuel. 2011, 90(7):2445-2453. doi: 10.1016/j.fuel.2011.03.006
    [22]
    MATSUDA S, KAMO T, KATO A. Deposition of ammonium bisulfate in the selective catalytic reduction of nitrogen oxides with ammonia[J]. Ind Eng Chem Prod Res Dev, 1982, 21(1):1888-1900. doi: 10.1021/i300005a009
    [23]
    [24]
    马双忱, 邓悦, 吴文龙, 张立男, 马京香, 张小霓. SCR脱硝过程中硫酸氢铵形成特性实验研究[J].动力工程学报. 2016, 36(2):143-150. http://www.cnki.com.cn/Article/CJFDTOTAL-DONG201602010.htm

    MA Shuang-chen, DENG Yue, WU Wen-long, ZHANG Li-nan, MA Jing-xiang, ZHANG Xiao-ni. Experimental research on ABS formation characteristics in SCR denitrification process[J]. Chin J Power Eng, 2016, 36(2):143-150. http://www.cnki.com.cn/Article/CJFDTOTAL-DONG201602010.htm
    [25]
    刘少武.硫酸工作手册[M].南京:东南大学出版社, 2001.

    LIU Shao-wu. Sulfuric Acid Workbook[M]. Nanjing:Southeast University Press, 2001.
    [26]
    陈晓露, 赵钦新, 鲍颖群, 王云刚, 李钰鑫. SO3脱除技术实验研究[J].动力工程学报, 2014, 34(12):966-971. http://www.cqvip.com/QK/95606A/201412/68797871504849524950484855.html

    CHEN Xiao-lu, ZHAO Qin-xin, BAO Ying-qun, WANG Yun-gang, LI Yu-xin. Experimental research on SO3 removal[J]. Chin J Power Eng, 2014, 34(12):966-971. http://www.cqvip.com/QK/95606A/201412/68797871504849524950484855.html
    [27]
    常景彩, 董勇, 王志强, 闫君, 陈朋, 马春元.燃煤烟气中SO3转换吸收特性模拟实验[J].煤炭学报, 2010, 35(10):1717-1720. http://www.cqvip.com/QK/96550X/201010/35633271.html

    CHANG Jing-cai, DONG Yong, WANG Zhi-qiang, YAN Jun, CHEN Peng, MA Chun-yuan. Simulation experiment of SO3 transfer and absorption characteristics in coal fired flue gas[J]. J China Coal Soc, 2010, 35(10):1717-1720. http://www.cqvip.com/QK/96550X/201010/35633271.html
    [28]
    张基标, 郝卫, 赵之军, 胡兴胜, 殷国强.锅炉烟气低温腐蚀的理论研究和工程实践[J].动力工程学报, 2011, 31(10):730-733, 738. http://www.wenkuxiazai.com/doc/5aa010d06f1aff00bed51eb8-4.html

    ZHANG Ji-biao, HAO Wei, ZHAO Zhi-jun, HU Xing-sheng, YIN Guo-qiang. Theoretical and practical research on mechanism of low-temperature corrosion caused by boiler flue gas[J]. Chin J Power Eng, 2011, 31(10):730-733, 738. http://www.wenkuxiazai.com/doc/5aa010d06f1aff00bed51eb8-4.html
    [29]
    向柏祥, 赵从振, 丁艳军, 马润田, 吕俊复.烟气酸露点的测量和预测模型分析[J].清华大学学报(自然科学版), 2015, 55(10):1117-1124. http://www.cqvip.com/QK/93884X/201510/667841886.html

    XIANG Bai-xiang, ZHAO Chong-zhen, DING Yan-jun, MA Run-tian, LU Jun-fu. Measurement and prediction model for the acid dew point in flue gases[J]. J Tsinghua Univ (Sci Technol), 2015, 55(10):1117-1124. http://www.cqvip.com/QK/93884X/201510/667841886.html
    [30]
    李婕, 贾斌, 羌宁.钍试剂分光光度法测定固定源烟气中SO3[J].环境污染与防治, 2008, 30(10):63-66. doi: 10.3969/j.issn.1001-3865.2008.10.018

    LI Jie, JIA Bin, QIANG Ning. Thorin colorimetric method for sulfur trioxide determination from stationary sources[J]. Environ Pollut Ctrl, 2008, 30(10):63-66. doi: 10.3969/j.issn.1001-3865.2008.10.018
    [31]
    GBT18204. 25-2000, 公共场所空气中氨测定方法[S].

    GBT18204. 25-2000, Method for determination of ammonia in the air of public places[S].
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (332) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return