YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal reduction of Si-Al-Fe-Ca quaternary system in a high-silica coal[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1296-1302.
Citation: YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal reduction of Si-Al-Fe-Ca quaternary system in a high-silica coal[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1296-1302.

Carbothermal reduction of Si-Al-Fe-Ca quaternary system in a high-silica coal

  • During coal pyrolysis and gasification, the minerals in coal undergo various transformations, which affects coal conversion and characteristics of coal ash obviously. Carbothermal reduction of Si-Al-Fe-Ca quaternary system in high-silica coal under different temperature was investigated. Composition of products obtained was analyzed by X-ray diffraction (XRD) and field emission scanning electron microscope-energy dispersive spectrometer (FESEM-EDS) technology. The results show that Fe2O3 plays a positive role in carbothermal reaction of silicon-bearing minerals, which could effectively improve activity of Si. On the contrary, CaO reacts with Al2O3 and SiO2 to form dense Ca-Al-Si eutectic, mainly CaAl2Si2O8, at lower temperature, covering surface of the reactant, which hinders the carbothermal reaction of silicon-containing minerals. With increasing temperature, CaAl2Si2O8 reacts with graphite to generate SiC, CaAl4O7 and CaSiO3. The related thermodynamic calculations are in accordance with the experiment results.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return