留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新疆褐煤疏水改性提高其成浆性能

张光华 郭晶 张万斌 杜伦 朱军峰 张雪 董秋辰

张光华, 郭晶, 张万斌, 杜伦, 朱军峰, 张雪, 董秋辰. 新疆褐煤疏水改性提高其成浆性能[J]. 燃料化学学报(中英文), 2020, 48(3): 257-265.
引用本文: 张光华, 郭晶, 张万斌, 杜伦, 朱军峰, 张雪, 董秋辰. 新疆褐煤疏水改性提高其成浆性能[J]. 燃料化学学报(中英文), 2020, 48(3): 257-265.
ZHANG Guang-hua, GUO Jing, ZHANG Wan-bin, DU Lun, ZHU Jun-feng, ZHANG Xue, DONG Qiu-chen. Hydrophobic modification of Xinjiang lignite to improve its slurryability[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 257-265.
Citation: ZHANG Guang-hua, GUO Jing, ZHANG Wan-bin, DU Lun, ZHU Jun-feng, ZHANG Xue, DONG Qiu-chen. Hydrophobic modification of Xinjiang lignite to improve its slurryability[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 257-265.

新疆褐煤疏水改性提高其成浆性能

基金项目: 

国家自然科学基金 21176148

陕西省重点研发计划 2020GY-232

陕西省教育厅项目 18JS014

详细信息
  • 中图分类号: TQ536.1

Hydrophobic modification of Xinjiang lignite to improve its slurryability

Funds: 

The project was supported by the National Natural Science Foundation of China 21176148

Key Research and Development Plan of Shaanxi Province 2020GY-232

Fund Project of the Education Department of Shaanxi Province 18JS014

More Information
  • 摘要: 针对新疆褐煤具有较高内水的问题,制备了阴离子AKD改性剂和非离子AKD改性剂,对褐煤颗粒进行疏水改性。研究了改性前后煤粒表面化学成分、孔隙分布、亲疏水性和Zeta电位等煤粒表面特性,并结合NSF分散剂在改性前后煤粒表面吸附量大小,探讨了改性前后褐煤水煤浆的成浆性、流变性和稳定性。结果表明,改性后煤粒孔隙结构降低,煤粒表面碳的相对含量增加,氧的相对含量降低,煤水界面接触角增加,煤粒疏水性能增强。NSF分散剂在改性煤表面吸附量增加,煤粒表面负电性增强。由阴离子AKD改性煤、非离子AKD改性煤制备的水煤浆最大成浆质量分数从原煤56.6%分别增加至61.0%、62.5%,浆体析水率从原煤13.97%分别降低至7.45%、7.89%,同时改性后煤粒制备的浆体均表现出剪切变稀的假塑性流体。因此,改性煤粒更容易制备高浓度、低黏度、高稳定性且易于储存和运输的水煤浆。
  • 图  1  改性剂添加量对水煤浆黏度的影响

    Figure  1  Effect of modifier addition on viscosity of CWS

    图  2  改性前后煤样C、O、Al、Si能谱谱图

    Figure  2  Energy spectra of C, O, Al and Si in coal samples before and after modification

    图  3  煤粒表面C、O、Al、Si元素分布

    Figure  3  Distribution of C, O, Al and Si elements on the surface of coal particles

    图  4  分散剂在改性前后煤表面等温吸附曲线

    Figure  4  Adsorption isotherm curves of dispersant on coal surface before and after modification

    图  5  水煤浆黏度随浓度的变化

    Figure  5  Change of viscosity of CWS with concentration

    图  6  水煤浆黏度随时间的变化

    Figure  6  Change of viscosity of CWS with time

    图  7  水煤浆流变特性

    Figure  7  Rheological properties of coal water slurry

    图  8  煤粒改性前后不稳定系数的变化

    Figure  8  Changes in TSI of raw coal and modified coal

    表  1  新疆褐煤的煤质分析

    Table  1  Analysis of coal elements and properties

    Coal sample Proximate analysis w/% Ultimate analysis w/%
    Mad Aad Vdaf Cdaf Hdaf Odaf Ndaf St, d
    Xinjiang coal 12.25 15.26 40.27 68.80 4.27 25.80 0.81 0.32
    下载: 导出CSV

    表  2  改性前后煤粒孔隙变化

    Table  2  Changes of coal porosity of raw coal and modified coal

    Coal samples Surface area A/
    (m2·g-1)
    Pore volume v/
    (cm3·g-1)
    Average pore size
    d/nm
    Raw coal 8.592 0.034 20.136
    Microwave drying coal 8.525 0.031 19.682
    1 % anionic AKD modified coal 3.698 0.027 19.168
    2 % nonionic AKDmodified coal 3.035 0.021 18.257
    下载: 导出CSV

    表  3  改性前后煤粒的接触角变化

    Table  3  Changes of contact angle of raw coal and modified coal

    表  4  等温吸附曲线拟合参数

    Table  4  Isothermal adsorption curve fitting parameters

    Coal samples Langmuir equation Freundlich equation
    Γ×10-6/(mol·g-1) b R2 k×10-5 n R2
    Raw coal 2.18 12197 0.9831 1.31 3.83 0.7499
    Microwave drying coal 2.46 11642 0.9932 1.48 3.80 0.7426
    Anionic AKD modified coal 3.39 6771 0.9923 3.85 2.77 0.8213
    Nonionic AKD modified coal 3.47 8450 0.9925 2.78 3.22 0.8757
    下载: 导出CSV

    表  5  改性煤粒前后Zeta电位的变化

    Table  5  Changes of Zeta potential of raw coal and modified coal

    Coal samples Before adsorbing the dispersant V/mV After adsorbing the dispersant V/mV Surface potential difference before and after adsorption dispersant V/mV
    Raw coal -21.3 -23.1 -1.8
    Microwave drying coal -19.6 -21.5 -1.9
    Anionic AKD modified coal -29.6 -36.4 -6.8
    Nonionic AKD modified coal -26.2 -33.7 -7.5
    下载: 导出CSV

    表  6  水煤浆流变模型拟合方程

    Table  6  Rheological data for CWS

    Coal samples Concentration
    w/%
    Viscosity
    μ/(mPa·s)
    Herschel-Bulkley Power-law
    τ0/Pa k/(Pa·sn) n R2 k/(Pa·sn) n R2
    Raw coal 56 893 -1.96 0.32 1.23 0.9996 0.23 1.30 0.9992
    Microwave drying coal 58 803 -0.92 0.19 1.31 0.9996 0.16 1.35 0.9993
    Anionic AKD modified coal 61 993 4.80 3.75 0.73 0.9989 5.08 0.67 0.9958
    Nonionic AKD modified coal 62 741 3.85 1.07 0.89 0.9945 1.76 0.80 0.9915
    下载: 导出CSV
  • [1] WANG J, LIU J, WANG S, CHENG J. Slurrying property and mechanism of coal-coal gasification wastewater-slurry[J]. Energy Fuels, 2018, 32(4):4833-4840. http://cn.bing.com/academic/profile?id=93cf68e3050a0b18db439ca57127902a&encoded=0&v=paper_preview&mkt=zh-cn
    [2] YU J L, TAHMASEBI A, HAN Y N, YIN F K, LI X C. A review on water in low rank coals:The existence interaction with coal structure and effects on coal utilization[J]. Fuel Process Technol, 2013, 106(2):9-20. http://cn.bing.com/academic/profile?id=c69d8d7efbd6cce383fa1561b031c07c&encoded=0&v=paper_preview&mkt=zh-cn
    [3] 张大洲, 卢文新, 陈风敬, 夏吴, 左静, 王志刚, 商宽祥.褐煤干燥水分回收利用及其研究进展[J].化工进展, 2016, 35(2):472-478. http://d.old.wanfangdata.com.cn/Periodical/hgjz201602021

    ZHANG Da-zhou, LU Wen-xin, CHEN Feng-jing, XIA Wu, ZUO Jing, WANG Zhi-gang, SHANG Kuan-xiang. Recent developments in recovery and utilization of water and heat from lignite dewatering[J]. Chem Ind Eng Prog, 2016, 35(2):472-478. http://d.old.wanfangdata.com.cn/Periodical/hgjz201602021
    [4] ALLARDICE D J, CLEMOW L M, FAVAS G, JACKSON W R, MARSHALL M, SAKUROVS R. The characterisation of different forms of water in low rank coals and some hydrothermally dried products[J]. Fuel, 2003, 82(6):661-667. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3230bc5fed08f29ed7d560af0d0a8425
    [5] JANGAM S V, KARTHIKEYAN M, MUJUMDAR A S. A critical assessment of industrial coal drying technologies:Role of energy, emissions, risk and sustainability[J]. Dry Technol, 2011, 29(4):395-407. http://cn.bing.com/academic/profile?id=27d9768084521a9948c09180bdd1515f&encoded=0&v=paper_preview&mkt=zh-cn
    [6] DINCER H, BOYLU F, SIRKECI A A, ATESOK G. The effect of chemicals on the viscosity and stability of coal water slurries[J]. Int J Miner Process, 2003, 70(1):41-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4dbe11c741e56926788520cb270d3c1b
    [7] 吴君宏.褐煤水热提质改善水煤浆的成浆性、流变性和稳定性的实验研究[J].燃料化学学报, 2019, 47(3):25-32. http://www.ccspublishing.org.cn/article/id/a96ca5b2-a796-40bd-8fd9-ae6196a7961d

    WU Jun-hong. Hydrothermal dewatering of lignite to improve the slurry-ability, rheology, and stability of coal-water slurry[J]. J Fuel Chem Technol, 2019, 47(3):25-32. http://www.ccspublishing.org.cn/article/id/a96ca5b2-a796-40bd-8fd9-ae6196a7961d
    [8] FU J, WANG J. Enhanced slurryability and rheological behaviors of two low-rank coals by thermal and hydrothermal pretreatments[J]. Power Technol, 2014, 266:183-190. http://cn.bing.com/academic/profile?id=4421ceea176169d34c0c57b1a7ee1d31&encoded=0&v=paper_preview&mkt=zh-cn
    [9] MEIKAP B C, PUROHIT N K, MAHADEVAN V. Effect of microwave pretreatment of coal for improvement of rheological characteristics of coal-water slurries[J]. J Colloid Interface Sci, 2005, 281(1):225-235. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=96c261baa9277ff4c9b613285b5a04dc
    [10] LIU J, WU J, ZHU J, WANG Z, ZHOU J, CEN K. Removal of oxygen functional groups in lignite by hydrothermal dewatering:An experimental and DFT study[J]. Fuel, 2016, 178(15):85-92. http://cn.bing.com/academic/profile?id=bd4ff8e88292e47137cabb5089dd4e18&encoded=0&v=paper_preview&mkt=zh-cn
    [11] ZHANG X P, ZHANG C, TAN P, LI X, FANG Q Y, CHEN G. Effects of hydrothermal upgrading on the physicochemical structure and gasification characteristics of Zhundong coal[J]. Fuel Process Technol, 2018, 172:200-208. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b21ee7c6ce633fda7b29fbece0640290
    [12] ZHOU Z J, LI X, LIANG J, LIANG J M, LIU J Z. Surface coating improves coal-water slurry formation of Shangwan coal[J]. Energy Fuels, 2011, 25(8):3590-3597. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a49f57f7bcc64081f81503c03abf831
    [13] GANI A, MORISHITA K, NISHIKAWA K, NARUSE I. Characteristics of co-combustion of low-rank coal with biomass[J]. Energy Fuels, 2005, 19(4):1652-1659. http://cn.bing.com/academic/profile?id=96c2d3fb7d99c9c531e61d570f0d45e6&encoded=0&v=paper_preview&mkt=zh-cn
    [14] BAE J S, LEE D W, LEE Y J, PARKET S J, PARK J H, HONG J C, KIM J G, YOON S P, KIM H T, HAN C, CHOI Y C. Improvement in coal content of coal-water slurry using hybrid coal impregnated with molasses[J]. Power Technol, 2014, 254:72-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9bbb6459ca683e6700644cc5977e44fa
    [15] 郭晶, 张光华, 张万斌, 朱军峰, 吴江, 杜伦.烷基烯酮二聚体对褐煤疏水改性及成浆性能的影响[J].化工进展, 2019, 38(10):4705-4711. http://d.old.wanfangdata.com.cn/Periodical/hgjz201910038

    GUO Jing, ZHANG Guang-hua, ZHANG Wan-bin, ZHU Jun-feng, WU Jiang, DU Lun. Effect on surface hydrophobic modification and slurribility of lignite coal by alkyl ketone dimer[J]. Chem Ind Eng Progress, 2019, 38(10):4705-4711. http://d.old.wanfangdata.com.cn/Periodical/hgjz201910038
    [16] GU T Y, WU G G, LI Q H, SUN Z Q, ZENG F, WANG G Y, MENG X L. Blended coals for improved coal water slurries[J]. J China Univ Min Technol, 2008, 18(1):50-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb-e200801011
    [17] PARK J H, LEE J H, JIN M H, PARK S J, LEE D W, BAE J S, KIM J G, SONG K H, CHOI Y C. Enhancement of slurryability and heating value of coal water slurry (CWS) by torrefaction treatment of low rank coal (LRC)[J]. Fuel, 2017, 203(1):403-410. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2c6fe014a1b5f130fd0dd567eb4db885
    [18] GAO Z F, ZHU S Q, ZHENG M D, WU Z J, LU H H, LIU W M. Effects of fractal surface on rheological behavior and combustion kinetics of modified brown coal water slurries[J]. J China Coal Soc, 2015, 3(3):211-222. http://cn.bing.com/academic/profile?id=81bba8505c158dbbab03604002824e99&encoded=0&v=paper_preview&mkt=zh-cn
    [19] 朱军峰, 李元博, 张光华, 王睿.聚羧酸盐侧链长度对水煤浆分散性能的影响及其作用机理[J].化工学报, 2015, 66(10):4202-4210. http://d.old.wanfangdata.com.cn/Periodical/hgxb201510050

    ZHU Jun-feng, LI Yuan-bo, ZHANG Guang-hua, WANG Rui. Action mechanism and effect of side chain length of polycarboxylate dispersant on disperse-on of coal-water slurries[J]. Chem Ind, 2015, 66(10):4202-4210. http://d.old.wanfangdata.com.cn/Periodical/hgxb201510050
    [20] 杨东杰, 郭闻源, 李旭昭.不同相对分子质量对接枝磺化木质素水煤浆分散剂吸附分散性能的影响[J].燃料化学学报, 2013, 41(1):20-25. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201301004

    YANG Dong-jie, GUO Wen-yuan, LI Xu-zhao. Effects of molecular weight of grafted sulfonated lignin on its dispersion and adsorption properties as a dispersant for coal water slurries[J]. J Fuel Chem Technol, 2013, 41(1):20-25. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201301004
    [21] WANG R K, MA Q Q, YE X M, LI C X, ZHAO ZH. Preparing coal slurry from coking wastewater to achieve resource utilization:slurrying mechanism of coking wastewater-coal slurry[J]. Sci Tot Environ, 2019, 650(2):1678-1687. http://cn.bing.com/academic/profile?id=664101c207332f1cbc9aa58c6ce4fd4b&encoded=0&v=paper_preview&mkt=zh-cn
    [22] LI D, LIU J Z, WANG J Q, BAI Q C, CHENG J, CEN K F. Experimental studies on coal water slurries prepared from coal gasification wastewater[J]. Asia-Pac J Chem Eng, 2017, 13(1). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/apj.2162
    [23] 但盼, 邱学青, 周明松.温度及剪切时间对水煤浆表观黏度及流变性影响[J].煤炭科学技术, 2008, 36(6):103-106. http://d.old.wanfangdata.com.cn/Periodical/mtkxjs200806030

    DAN Pan, QIU Xue-qing, ZHOU Ming-song. Temperature and shearing time influenced to viscosity and rheological behavior of coal water slurry[J]. Coal Sci Technol, 2008, 36(6):103-106. http://d.old.wanfangdata.com.cn/Periodical/mtkxjs200806030
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  59
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 修回日期:  2020-02-03
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-03-10

目录

    /

    返回文章
    返回