留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲烷在层状石墨烯和活性炭上的吸附平衡

张维东 郑青榕 王泽浩 张轩

张维东, 郑青榕, 王泽浩, 张轩. 甲烷在层状石墨烯和活性炭上的吸附平衡[J]. 燃料化学学报(中英文), 2019, 47(8): 1008-1015.
引用本文: 张维东, 郑青榕, 王泽浩, 张轩. 甲烷在层状石墨烯和活性炭上的吸附平衡[J]. 燃料化学学报(中英文), 2019, 47(8): 1008-1015.
ZHANG Wei-dong, ZHENG Qing-rong, WANG Ze-hao, ZHANG Xuan. Adsorption equilibrium of methane on layered graphene sheets and activated carbon[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 1008-1015.
Citation: ZHANG Wei-dong, ZHENG Qing-rong, WANG Ze-hao, ZHANG Xuan. Adsorption equilibrium of methane on layered graphene sheets and activated carbon[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 1008-1015.

甲烷在层状石墨烯和活性炭上的吸附平衡

基金项目: 

厦门市科技计划 3502Z20173026

详细信息
  • 中图分类号: O647.32

Adsorption equilibrium of methane on layered graphene sheets and activated carbon

Funds: 

the Science and Technology Bureau of Xiamen 3502Z20173026

More Information
    Corresponding author: ZHENG Qing-rong, Tel: 0592-6183533, Fax: 0592-6180332, E-mail: zhengqr@jmu.edu.cn
  • 摘要: 以吸附式天然气(ANG)吸附剂的工程应用为目的,以0-10 MPa、283.15-303.15 K甲烷在层状石墨烯(GS(3D),比表面积2062 m2/g)和活性炭SAC-01(比表面积1507 m2/g)上的吸附平衡数据作分析。首先,在77.15 K下由氮气吸附表征样品的孔径大小及分布(PSD)和比表面积。其次,选择极低压力下的吸附平衡数据标定亨利定律常数,确定甲烷在两吸附剂上的极限吸附热,并由维里方程和10-4-3势能函数计算甲烷与两吸附剂壁面之间的相互作用势。最后,依据测试的甲烷在吸附剂上的高压吸附平衡数据,比较了Langmuir系列方程的关联数据后的拟合精度,并由绝对吸附量计算了甲烷的等量吸附热。结果表明,甲烷在GS(3D)和活性炭SAC-01上的平均极限吸附热为23.07、20.67 kJ/mol;283.15 K下甲烷分子与GS(3D)和活性炭SAC-01之间的交互作用势εsf/k为67.19、64.23 K,与洛伦混合法则的计算值64.60 K相近;Toth方程关联甲烷在活性炭SAC-01和GS(3D)上吸附平衡数据的拟合累计相对误差为0.25%和2.29%;甲烷在活性炭SAC-01和GS(3D)上的等量吸附热平均值为16.8和18.3 kJ/mol。相对于活性炭SAC-01,比表面积和微孔容积均较高的GS(3D)对甲烷的吸附更具有优势。
  • 图  1  77.15 K氮在试样上的吸附等温线(a)及试样的PSD谱图(b)

    Figure  1  Isotherms (a) of nitrogen at 77.15 K on two samples and the PSD (b) of the adsorbents

    图  2  低压下甲烷在SAC-01活性炭(a)和GS(3D)(b)上的吸附等温线

    Figure  2  Isotherms of methane adsorption on activated carbon (a) and GS(3D) (b) at very low pressure ranges

    图  3  甲烷在SAC-01(a)和GS(3D)(b)上的过剩吸附等温线

    Figure  3  Isotherms of excess amounts of methane adsorption on activated carbon SAC-01 (a) and layered graphene GS(3D) (b)

    图  4  293.15 K下关联拟合参数后的吸附模型计算甲烷在活性炭SAC-01(a)和层状石墨烯GS(3D)(b)上吸附量与测试值之间的相对误差

    Figure  4  Relative errors between experimental data and those predicted by correlatively fitted adsorption models for methane adsorption on activated carbon (a) and layered graphene GS(3D) (b) at 293.15 K

    图  5  甲烷在活性炭SAC-01(a)和层状石墨烯GS(3D)(b)上的绝对吸附等温线

    Figure  5  Isotherms of absolute adsorption amounts of methane on activated carbon SAC-01 (a) and layered graphene GS(3D) (b)

    图  6  甲烷在活性炭SAC-01和层状石墨烯GS(3D)上的等量吸附热

    Figure  6  Isosteric heat of methane adsorption on activated carbon SAC-01 and layered graphene GS(3D)

    表  1  SAC-01活性炭和GS(3D)的结构参数

    Table  1  Structural parameters of activted carbon SAC-01 and layered graphene GS(3D)

    Sample BET specific surface area
    A/(m2·g-1)
    Pore width
    d/nm
    Micro-pore volume
    v/(mL·g-1)
    Packing density
    ρ/(g·cm-3)
    SAC-01 1507 0.77 0.54 0.51
    GS(3D) 2062 0.93 0.61 0.22
    下载: 导出CSV

    表  2  低压下甲烷在两吸附剂上的标绘参数

    Table  2  Parameters of methane adsorption on two adsorbents determined by adsorption data measured at low pressure

    T/K HP/(mmol·Pa·g) BASE+9/(m3·g-1) qst0/(kJ·mol-1)
    SAC-01 GS(3D) SAC-01 GS(3D) SAC-01 GS(3D)
    283.15 0.00179 0.00154 31.11 10.44 21.52 24.74
    293.15 0.00142 0.00118 16.97 5.10 21.13 23.13
    303.15 0.00103 0.00065 6.59 0.93 19.36 21.34
    Mean value 0.00141 0.00112 18.22 5.49 20.67 23.07
    下载: 导出CSV

    表  3  293.15 K时甲烷在活性炭SAC-01上模型值的累计相对误差

    Table  3  Accumulated relative errors from the results of methane adsorption on activated carbon SAC-01 at 293.15 K determined by different adsorption models

    Adsorption model Accumulated relative errors ε/%
    0-1 MPa 1-10 MPa 0-10 MPa
    Langmuir 24.74 7.12 15.93
    Langmuir-Freundlich 1.75 0.26 1.01
    Toth 0.25 0.24 0.25
    下载: 导出CSV

    表  4  293.15 K时甲烷在层状石墨烯GS(3D)上模型计算值的累计相对误差

    Table  4  Accumulated relative errors from the results of methane adsorption on layered graphene at 293.15 K determined by different adsorption models

    Adsorption model Accumulated relative errors ε/%
    0-1 MPa 1-10 MPa 0-10 MPa
    Langmuir 5.58 1.37 3.48
    Langmuir-Freundlich 4.98 0.80 2.89
    Toth 3.90 0.69 2.29
    下载: 导出CSV

    表  5  甲烷分子与不同碳基材料壁面之间的相互作用势

    Table  5  Interaction potentials between methane molecules and adsorbent surface of different carbon based materials

    T/K εsf/k/K Eminza/10-20J
    SAC-01 GS(3D) SAC-01 GS(3D)
    283.15 64.12 68.07 4.83 5.00
    293.15 64.86 67.40 4.91 5.10
    303.15 63.81 66.09 4.85 5.15
    下载: 导出CSV
  • [1] YAN Y, KOLOKOLOV D I, SILVA I D, STEPANOV A G, BLAKE A J, DAILLY A, MANUEL P, TANG C C, YANG S H, SCHRÖDER M. Porous metal-organic polyhedral frameworks with optimal molecular dynamics and pore geometry for methane storage[J]. Am Chem Soc, 2017, 139:13349-13360. doi: 10.1021/jacs.7b05453
    [2] WALKER N R, WISSINK M L, DEL V D A, REITZ R D. Natural gas for high load dual-fuel reactivity controlled compression ignition in heavy-duty engines[J]. J Energy Resour Technol Trans ASME, 2015, 137(4), Article number:042202.
    [3] EDUARDO F S A, FABIO B N, ARNALDO JR F. The main catalytic challenges in GTL(gas-to-liquids) processes[J]. Catal Sci Technol, 2011, 1(5):5698-713. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9823f5c8a08852f5ec0dc5063168d971
    [4] KUMAR K V, PREUSS K, TITIRICI M M, RODRǏGUEZ-REINOSO F. Nanoporous materials for the onboard storage of natural gas[J]. Chem Rev, 2017, 117(3):1796-1825. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea466680693db849047c47a7dd89d919
    [5] BAGHERI N, ABEDI J. Adsorption of methane on corn cobs based activated carbon[J]. Chem Eng Res Des, 2011, 89(10):2038-2043. doi: 10.1016/j.cherd.2011.02.002
    [6] BYAMBA-OCHIR N, WANG G S, BALATHANIGAIMANI M S, MOON H. High density Mongolian anthracite based porous carbon monoliths for methane storage by adsorption[J]. Appl Energy, 2017, 190:257-265. doi: 10.1016/j.apenergy.2016.12.124
    [7] JIA Z, LI H, YU Z, WANG P, FAN X L. Densification of MOF-5 synthesized at ambient temperature for methane adsorption[J]. Mater Lett, 2011, 65(15):2445-2447. https://www.sciencedirect.com/science/article/abs/pii/S0167577X11004903
    [8] MORRIS R E, WHEATLEY P S. Gas storage in nanoporous materials[J]. Angew Chem, 2008, 47(27):4966-4981. doi: 10.1002/anie.v47:27
    [9] KIM S Y, KIM A R, YOON J W, KIM H J, BAE Y S. Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake[J]. Chem Eng J, 2018, 335:94-100. doi: 10.1016/j.cej.2017.10.078
    [10] SHAYEGANFAR F, NEEK-AMAL M. Methane molecule over the defected and rippled graphene sheet[J]. Solid State Commun, 2012, 152(15):1493-1496. doi: 10.1016/j.ssc.2012.04.049
    [11] YANG D G, YANG N, NI J M, JING X, JIANG J K, LIANG Q H, REN T L, CHEN X P. First-principles approach to design and evaluation of graphene as methane sensors[J]. Mater Des, 2017, 119:397-405. doi: 10.1016/j.matdes.2017.01.087
    [12] JIANG H, CHEN X L. Simulations on methane uptake in tunable pillared porous graphene hybrid architectures[J]. J Mol Graphics Modell, 2018, 85:223-231. doi: 10.1016/j.jmgm.2018.09.006
    [13] BYAMBA-OCHIR N, WANG G S, BALATHANIGAIMANI M S, MOON H. High density Mongolian anthracite based porous carbon monoliths for methane storage by adsorption[J]. Appl Energy, 2017, 190:257-265. doi: 10.1016/j.apenergy.2016.12.124
    [14] BAGHERI N, ABEDI J. Adsorption of methane on corn cobs based activated carbon[J]. Chem Eng Res Des, 2011, 89:2038-2043. doi: 10.1016/j.cherd.2011.02.002
    [15] 郑青榕, DO Duong D.甲烷在石墨化热解碳黑和活性炭上的吸附[J].燃料化学学报, 2010, 38(3):359-364. doi: 10.3969/j.issn.0253-2409.2010.03.018

    ZHENG Qing-rong, DO Duong D. Methane adsorption on activated carbon and carbon black[J]. J Fuel Chem Technol, 2010, 38(3):359-364. doi: 10.3969/j.issn.0253-2409.2010.03.018
    [16] 郑青榕, 朱子文, 罗婉珍.吸附式天然气储罐充放气过程的试验研究[J].石油与天然气化工, 2014, 43(5):497-500. doi: 10.3969/j.issn.1007-3426.2014.05.007

    ZHENG Qing-rong, ZHU Zi-wen, LUO Wan-zhen. Experimental study of the ANG storage tank during charge and discharge[J]. Chem Eng Oil Gas, 2014, 43(5):497-500. doi: 10.3969/j.issn.1007-3426.2014.05.007
    [17] 周子娥, 薛春瑜, 阳庆元, 仲崇立.新型储甲烷金属-有机骨架材料的设计[J].化学学报, 2009, 67(6):477-482. doi: 10.3321/j.issn:0567-7351.2009.06.004

    ZHOU Zi-e, XUE Chun-yu, YANG Qing-yuan, ZHONG Chong-li. Design of metal-organic frameworks for methane storage[J]. Acta Chim Sin, 2009, 67(6):477-482. doi: 10.3321/j.issn:0567-7351.2009.06.004
    [18] 曾余瑶, 张秉坚.金属-有机骨架材料MOF-5的改进与吸附甲烷的巨正则蒙特卡罗模拟[J].物理化学学报, 2008, 24(8):1493-1497. doi: 10.3866/PKU.WHXB20080828

    ZENG Yu-yao, ZHANG Bing-jian. Designed metal-organic frameworks based on MOF-5 and their methane adsorption calculation by grand canonical monte carlo method[J]. Actq Phys-Chim Sin, 2008, 24(8):1493-1497. doi: 10.3866/PKU.WHXB20080828
    [19] TAHMOORESI M, SABZI F. Sorption of methane in a series of Zn-based MOFs studied by PHSC equation of state[J]. Fluid Phase Equilib, 2014, 381(381):83-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=63d767eb9fae210c02fdd01b1524642e
    [20] 张伊, 顾奕奕, 陈云琳, 王铭扬, 张兴华.掺杂金属离子对MOF-5吸附甲烷分子的影响[J].化工新型材料, 2015, 43(2):93-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl201502031

    ZHANG Yi, GU Yi-yi, CHEN Yun-lin, WANG Ming-yang, ZHANG Xing-hua. Influence of metal ions doping on the gas-adsorption property of MOF-5[J]. New Chem Mater, 2015, 43(2):93-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl201502031
    [21] XU G J, MENG Z S, LIU Y Z, GUO X J, DENG K M, LU R F. Heterofullerene-linked metaleorganic framework with lithium decoration for storing hydrogen and methane gases[J]. Int J Hydrogen Energy, 2019, 44(13):6702-6708. doi: 10.1016/j.ijhydene.2019.01.134
    [22] 王晓华, 郑青榕, 高帅.甲烷在石墨烯与活性炭上的吸附平衡[J].集美大学学报(自然版), 2013, 18(6):451-455. http://d.old.wanfangdata.com.cn/Periodical/jmdxxb-zr201306009

    WANG Xiao-hua, ZHENG Qing-rong, GAO Shuai. Adsorption equilibrium of methane on graphene sheets and activated carbon[J]. J Jimei Univ, Nat Sci, 2013, 18(6):451-455. http://d.old.wanfangdata.com.cn/Periodical/jmdxxb-zr201306009
    [23] 王泽浩, 郑青榕, 朱子文, 唐政.甲烷在碳基材料和MOFs上极低压力下的吸附平衡[J].天然气化工-C1化学与化工, 2018, 43(5):15-20. http://d.old.wanfangdata.com.cn/Periodical/trqhg201805004

    WANG Ze-hao, ZHENG Qing-rong, ZHU Zi-wen, TANG Zhen. Adsorption equilibrium of methane on carbon-based material and MOFs at very low pressure[J]. Nat Gas Chem Ind, 2018, 43(5):15-20. http://d.old.wanfangdata.com.cn/Periodical/trqhg201805004
    [24] ZHENG Q R, JI X, GAO S, WANG X. Analysis of adsorption equilibrium of hydrogen on graphene sheets[J]. Int J Hydrogen Energy, 2013, 38(25):10896-10902. doi: 10.1016/j.ijhydene.2013.01.098
    [25] CLARK A. The Theory of Adsorption and Catalysis[M]. New York:Academic Press, 1970:160-271.
    [26] MEEKS O R, RYBOLT T R. Correlations of adsorption energies with physical and structural properties of adsorbate molecules[J]. J Colloid Interface Sci, 1997, 196(1):103-109. doi: 10.1006/jcis.1997.5198
    [27] MENON P G. Adsorption at high pressures[J]. Chem Rev, 1968, 68(3):277-294. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201312005
    [28] ZHOU L, ZHOU Y P, LI M, CHEN P, WANG Y. Experimental and modeling study of the adsorption of supercritical methane on a high surface activated carbon[J]. Langmuir, 2000, 16(14):5955-5959. doi: 10.1021/la991159w
    [29] DO D D, H D D, TRAN K N. Analysis of adsorption of gases and vapors on nonporous graphitized thermal carbon black[J]. Langmuir, 2003, 19(14):5656-5668. doi: 10.1021/la020191e
    [30] STEELE W A. The Interaction of Gases with Solid Surface[M]. Oxford:Pergamon, 1974.
    [31] 曹达鹏, 高广图, 汪文川.巨正则系综Monte Carlo方法模拟甲烷在活性炭孔中的吸附存储[J].化工学报, 2000, 51(1):24-29. http://d.old.wanfangdata.com.cn/Periodical/hgxb200001005

    CAO Da-peng, GAO Guang-tu, WANG Wen-chuan. Grand canonical ensemble monte carlo simulation of adsorption storage of methane in slit micropores[J]. CIESC J, 2000, 51(1):24-29. http://d.old.wanfangdata.com.cn/Periodical/hgxb200001005
    [32] BÉNARD P, CHAHINE R. Determination of the adsorption isotherms of hydrogenon activated carbons above the critical temperature ofthe adsorbate over wide temperature and pressureranges[J]. Langmuir, 2001, 17(6):1950-1955. doi: 10.1021/la001381x
    [33] ZHU Z W, ZHENG Q R, WANG Z H, TANG Z, CHEN W. Hydrogen adsorption on graphene sheets and nonporous graphitized thermal carbon black at low surface coverage[J]. Int J Hydrogen Energy, 2017, 42:18465-18472. doi: 10.1016/j.ijhydene.2017.04.173
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  73
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-09
  • 修回日期:  2019-06-03
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-08-10

目录

    /

    返回文章
    返回