留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硬模板法制备固体氧化物燃料电池Ni0.5Cu0.5Ba0.05Ox包覆管状SDC立体阳极

由宏新 招聪 曲斌 刘润杰 官国清 徐立军 阿布里提

由宏新, 招聪, 曲斌, 刘润杰, 官国清, 徐立军, 阿布里提. 硬模板法制备固体氧化物燃料电池Ni0.5Cu0.5Ba0.05Ox包覆管状SDC立体阳极[J]. 燃料化学学报(中英文), 2016, 44(10): 1272-1280.
引用本文: 由宏新, 招聪, 曲斌, 刘润杰, 官国清, 徐立军, 阿布里提. 硬模板法制备固体氧化物燃料电池Ni0.5Cu0.5Ba0.05Ox包覆管状SDC立体阳极[J]. 燃料化学学报(中英文), 2016, 44(10): 1272-1280.
YOU Hong-xin, ZHAO Cong, QU Bin, LIU Run-jie, GUAN Guo-qing, XU Li-jun, ABULITI. Fabrication of Ni0.5Cu0.5Ba0.05Ox coated SDC stereoscopic anode by hard template method for solid oxide fuel cells[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1272-1280.
Citation: YOU Hong-xin, ZHAO Cong, QU Bin, LIU Run-jie, GUAN Guo-qing, XU Li-jun, ABULITI. Fabrication of Ni0.5Cu0.5Ba0.05Ox coated SDC stereoscopic anode by hard template method for solid oxide fuel cells[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1272-1280.

硬模板法制备固体氧化物燃料电池Ni0.5Cu0.5Ba0.05Ox包覆管状SDC立体阳极

基金项目: 

新疆维吾尔自治区国际科技合作计划项目 20156007

详细信息
  • 中图分类号: TM911.4

Fabrication of Ni0.5Cu0.5Ba0.05Ox coated SDC stereoscopic anode by hard template method for solid oxide fuel cells

More Information
    Corresponding author: Tel:+0411-84986283, Fax: +0411-84986283, E-mail: youhx@sina.com
  • 摘要: 为在固体氧化物燃料电池中有效利用干甲烷为燃料,需制作多孔立体阳极。采用硬模板法和浸渍法制备Ni0.5Cu0.5Ba0.05Ox包覆管状SDC阳极材料(Ni0.5Cu0.5Ba0.05Ox/SDC),为作对比,用溶胶凝胶法制备粉末状Ni0.5Cu0.5Ba0.05Ox,机械混合SDC粉末制备Ni0.5Cu0.5Ba0.05Ox-SDC。将这两种阳极材料分别制作电解质支撑的单电池Ni0.5Cu0.5Ba0.05Ox/SDC|YSZ|LSM-YSZ与Ni0.5Cu0.5Ba0.05Ox-SDC|YSZ|LSM-YSZ,并进行发电性能测试以及长期稳定性实验。结果表明,800℃下,干甲烷环境中,Ni0.5Cu0.5Ba0.05Ox-SDC为阳极的单电池最大功率密度为324.99 mW/cm2,运行10 h后,电压下降5.60%;而以Ni0.5Cu0.5Ba0.05Ox/SDC为阳极的单电池最大功率密度达到384.54 mW/cm2,运行100 h后,电压未严重衰减。实验后阳极的SEM照片表明,Ni0.5Cu0.5Ba0.05Ox-SDC阳极内孔隙狭小,易被积炭堵塞;而Ni0.5Cu0.5Ba0.05Ox/SDC阳极呈立体多孔结构,有利于燃料气体与反应后气体的扩散。催化剂颗粒均匀地包覆在SDC纤维管表面,有利于增加三相界面,提高电池的稳定性。
  • 图  1  单电池性能测试装置示意图

    Figure  1  Schematic diagram of the unit cell performance test device

    图  2  不同方法制备的复合阳极材料的XRD谱图

    Figure  2  XRD patterns of the as-prepared anode materials by different methods

    (a): Ni0.5Cu0.5Ba0.05Ox; (b): SDC; (c): Ni0.5Cu0.5Ba0.05Ox coating tubular SDC

    图  3  不同单电池实验后阳极的EDS分析

    Figure  3  EDS analysis for different anodes of unit cell after tests

    (a): Ni0.5Cu0.5Ba0.05Ox-SDC; (b): Ni0.5Cu0.5Ba0.05Ox/SDC

    图  4  不同方法制备的阳极材料的SEM照片

    Figure  4  SEM images of the anode materials prepared by different methods

    (a): Ni0.5Cu0.5Ba0.05Ox; (b): Ni0.5Cu0.5Ba0.05Ox coating tubular SDC

    图  5  以Ni0.5Cu0.5Ba0.05Ox-SDC为阳极的单电池的发电性能

    Figure  5  Power generating performances of unit cell with Ni0.5Cu0.5Ba0.05Ox-SDC as anode

    (a): in hydrogen; (b): in dry methane ■, □: 800 ℃; ●, ○: 750 ℃; ▲, △: 700 ℃; ◆, ◇: 650 ℃

    图  6  以Ni0.5Cu0.5Ba0.05Ox包覆管状SDC为阳极的单电池的发电性能

    Figure  6  Power generating performances of unit cell with Ni0.5Cu0.5Ba0.05Ox/SDC as anode

    (a): in hydrogen; (b): in dry methane ■, □: 800 ℃; ●, ○: 750 ℃; ▲, △: 700 ℃; ◆, ◇: 650 ℃

    图  7  不同单电池的电压随时间的变化

    Figure  7  Voltage change with time for the as-prepared unit cells

    图  8  单电池实验后的阳极表面和截面照片

    Figure  8  Surface (a), (c) and cross section (b), (d) SEM images of different anodes after performance tests

    (a), (b): Ni0.5Cu0.5Ba0.05Ox-SDC; (c), (d): Ni0.5Cu0.5Ba0.05Ox/SDC

    图  9  不同阳极的单电池运行后的积炭现象照片

    Figure  9  Carbon deposition on the unit cells with different anodes after running

    (a): Ni0.5Cu0.5Ba0.05Ox-SDC, 10 h; (b): Ni0.5Cu0.5Ba0.05Ox/SDC, 100 h

    图  10  不同单电池长期稳定性实验后的能谱图

    Figure  10  EDS analysis results of different unit cells after long-term stability test

    (a): Ni0.5Cu0.5Ba0.05Ox-SDC; (b): Ni0.5Cu0.5Ba0.05Ox/SDC

  • [1] PARK S, VOHS J M, GORTE R J.Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J].Nature, 2000, 404(6775):265-267. doi: 10.1038/35005040
    [2] GROSS M D, VOHS J M, GORTE R J.Recent progress in SOFC anodes for direct utilization of hydrocarbons[J].J Mater Chem, 2007, 17(30):3071-3077. doi: 10.1039/b702633a
    [3] GUERET C, DAROUX M, BILLAUD F.Methane pyrolysis:Thermodynamics[J].Chem Eng Sci, 1997, 52(5):815-827. doi: 10.1016/S0009-2509(96)00444-7
    [4] MOGENSEN M, KAMMER K.Conversion of hydrocarbons in solid oxide fuel cells[J].Cheminform, 2003, 33(1):321-331.
    [5] YOON J S, YI E J, CHOI B H, JI M J, HWANG J H.Methane oxidation behavior over La0.08Sr0.92Fe0.20Ti0.80O3-δ perovskite oxide for SOFC anode[J].Ceram Int, 2014, 40(1):1525-1529. doi: 10.1016/j.ceramint.2013.07.038
    [6] ASAMOTO M, MIYAKE S, SUGIHARA K, YAHIRO H.Improvement of Ni/SDC anode by alkaline earth metal oxide addition for direct methane-solid oxide fuel cells[J].Electrochem Commun, 2009, 11(7):1508-1511. doi: 10.1016/j.elecom.2009.05.042
    [7] JUN J H, LIM T H, NAM S W, HONGB S A, YOON K J.Mechanism of partial oxidation of methane over a nickel-calcium hydroxyapatite catalyst[J].Appl Catal A:Gen, 2006, 312:27-34. doi: 10.1016/j.apcata.2006.06.020
    [8] LIU L, KIM G Y, HILLIER A C, CHANDRAA A.Microstructural and electrochemical impedance study of nickel-Ce0.9Gd0.1O1.95 anodes for solid oxide fuel cells fabricated by ultrasonic spray pyrolysis[J].J Power Sources, 2011, 196(6):3026-3032. doi: 10.1016/j.jpowsour.2010.11.117
    [9] NIKOLLA E, SCHWANK J, LINIC S.Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts:The impact of the formation of Ni alloy on chemistry[J].J Catal, 2009, 263(2):220-227. doi: 10.1016/j.jcat.2009.02.006
    [10] LEE S I, VOHS J M, GORTE R J.A Study of SOFC Anodes Based on Cu-Ni and Cu-Co Bimetallics in CeO2 YSZ[J].J Electrochem Soc, 2004, 151(9):A1319-A1323. doi: 10.1149/1.1774184
    [11] GRGICAK C M, PAKULSKAM M, O'BRIENJ S, GIORGI J B.Synergistic effects of Ni1-xCox-YSZ and Ni1-xCux-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S[J].J Power Sources, 2008, 183(1):26-33. doi: 10.1016/j.jpowsour.2008.05.002
    [12] KAN H, LEE H.Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistancefor an intermediate temperature SOFC[J].Appl Catal B:Environ, 2010, 97(1):108-114.
    [13] YORK A P E, XIAO T C, GREEN M L H, CLARIDGE J B.Methane oxyforming for synthesis gas production[J].Catal Rev, 2007, 49(4):511-560. doi: 10.1080/01614940701583315
    [14] RISMANCHIAN A, MIRZABABAEI J, CHUANG S S C.Electroless plated Cu-Ni anode catalyst for natural gas solid oxide fuel cells[J].Catal Today, 2015, 245:79-85. doi: 10.1016/j.cattod.2014.05.012
    [15] ROSA D L, SIN A, FARO M L, MONFORTEA G, ANTONUCCIA V, ARICÒA A S.Mitigation of carbon deposits formation in intermediate temperature solid oxide fuel cells fed with dry methane by anode doping with barium[J].J Power Sources, 2009, 193(1):160-164. doi: 10.1016/j.jpowsour.2009.01.096
    [16] SIN A, KOPNIN E, DUBITSKY Y, ZAOPO A, ARICÒB A S, ROSA D L, GULLOB L R, ANTONUCCIB V.Performance and life-time behaviour of NiCu-CGO anodes for the direct electro-oxidation of methane in IT-SOFCs[J].J Power Sources, 2007, 164(1):300-305. doi: 10.1016/j.jpowsour.2006.10.078
    [17] SUMI H, YAMAGUCHI T, SUZUKI T, SHIMADA H, HAMAMOTO K, FUJISHIRO Y.Effects of anode microstructures on durability of microtubular solid oxide fuel cells during internal steam reforming of methane[J].Electrochem Commun, 2014, 49:34-37. doi: 10.1016/j.elecom.2014.10.006
    [18] HASLAM J J, PHAM A Q, CHUNG B W, DICARLO J F, GLASS R S.Effects of the use of pore formers on performance of an anode supported solid oxide fuel cell[J].J Am Ceram Soc, 2005, 88(3):513-518. doi: 10.1111/jace.2005.88.issue-3
    [19] NIE L F, LIU J C, ZHANG Y J, LIU M L.Effects of pore formers on microstructure and performance of cathode membranes for solid oxide fuel cells[J].J Power Sources, 2011, 196(23):9975-9979. doi: 10.1016/j.jpowsour.2011.08.036
    [20] PAN W P, LV Z, CHEN K F, HUANG X Q, WEI B, LI W Y, WANG Z H, SUA W H.Novel polymer fibers prepared by electrospinning for use as the pore-former for the anode of solid oxide fuel cell[J].Electrochim Acta, 2010, 55(20):5538-5544. doi: 10.1016/j.electacta.2010.04.037
    [21] SRIVASTAVA P K, QUACH T, DUAN Y Y, DONELSON R, JIANG S P, CIACCHI F T, BADWAL S.Electrode supported solid oxide fuel cells:Electrolyte films prepared by DC magnetron sputtering[J].Solid State Ionics, 1997, 99(3):311-319.
    [22] SARIKAYA A, PETROVSKY V, DOGAN F.Effect of the anode microstructure on the enhanced performance of solid oxide fuel cells[J].Int J Hydrogen Energy, 2012, 37(15):11370-11377. doi: 10.1016/j.ijhydene.2012.05.007
    [23] WANG F H, GUO R S, WEI Q T, ZHOU Y, LI H L, LI S L.Preparation and properties of Ni/YSZ anode by coating precipitation method[J].Mater Lett, 2004, 58(24):3079-3083. doi: 10.1016/j.matlet.2004.05.047
    [24] YOU H X, ZHAO C, QU B, GUAN G Q, ABUDULA A.Fabrication of Ni0.5Cu0.5Ox coated YSZ anode by hard template method for solid oxide fuel cells[J].J Alloys Compd, 2016, 669:46-54. doi: 10.1016/j.jallcom.2016.01.238
    [25] FARO M L, FRONTERA P, ANTONUCCI P L, ARICÒA A S.Ni-Cu based catalysts prepared by two different methods and their catalytic activity toward the ATR of methane[J].Chem Eng Res Des, 2015, 93:269-277. doi: 10.1016/j.cherd.2014.05.014
    [26] LI X B, SHAO G Q, LUO J M, LU J S, XUE M S, HOU Y H, DENG L P.Fabrication and characterization of GDC electrolyte/electrode integral SOFC with BaO/Ni-GDC anode[J].Mater Res Bull, 2014, 50:337-340. doi: 10.1016/j.materresbull.2013.11.034
  • 加载中
图(10)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  31
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-27
  • 修回日期:  2016-06-30
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-10-10

目录

    /

    返回文章
    返回