留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SO42-/ZrO2-Al2O3催化剂表面酸性质对正丁烷异构化反应性能的影响研究

张文芳 张敏秀 王鹏照 杨朝合 李春义

张文芳, 张敏秀, 王鹏照, 杨朝合, 李春义. SO42-/ZrO2-Al2O3催化剂表面酸性质对正丁烷异构化反应性能的影响研究[J]. 燃料化学学报(中英文), 2017, 45(6): 669-674.
引用本文: 张文芳, 张敏秀, 王鹏照, 杨朝合, 李春义. SO42-/ZrO2-Al2O3催化剂表面酸性质对正丁烷异构化反应性能的影响研究[J]. 燃料化学学报(中英文), 2017, 45(6): 669-674.
ZHANG Wen-fang, ZHANG Min-xiu, WANG Peng-zhao, YANG Chao-he, LI Chun-yi. Study on the structure-reactivity correlation of SO42-/ZrO2-Al2O3 in n-butane isomerization reaction[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 669-674.
Citation: ZHANG Wen-fang, ZHANG Min-xiu, WANG Peng-zhao, YANG Chao-he, LI Chun-yi. Study on the structure-reactivity correlation of SO42-/ZrO2-Al2O3 in n-butane isomerization reaction[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 669-674.

SO42-/ZrO2-Al2O3催化剂表面酸性质对正丁烷异构化反应性能的影响研究

基金项目: 

中央高校基础研究基金 16CX06009A

中国石油大学(华东)研究生自主创新工程基金 YCXJ2016031

详细信息
    通讯作者:

    李春义, Tel:0532-86981862, E-mail:chuyli@upc.edu.cn

  • 中图分类号: TQ536.9

Study on the structure-reactivity correlation of SO42-/ZrO2-Al2O3 in n-butane isomerization reaction

Funds: 

the Basic Research Fund of Central University 16CX06009A

Graduate Student Innovation Project Funds of China University of Petroleum YCXJ2016031

  • 摘要: 采用“沉淀-浸渍”法制备一系列不同硫酸负载量的SO42-/ZrO2-Al2O3催化剂,利用N2吸附-脱附、Py-FTIR、XRD等手段对催化剂进行表征。在常压、200 ℃、H2:C4=2:3和质量空速为3 h-1的反应条件下,在固定床微型反应评价装置上考察了硫酸负载量对SO42-/ZrO2-Al2O3催化正丁烷异构化反应性能的影响。Py-FTIR结果表明,硫酸化处理为催化剂表面提供了丰富的Brønsted酸性位,其中,强Brønsted酸性位在正丁烷异构化反应中起重要作用,因此,硫酸化处理可显著提高正丁烷异构化活性,而Lewis酸性位与之没有直接关系。
  • 图  1  不同硫酸负载量催化剂的XRD谱图

    ◆: tetragonal ZrO2; ●: monoclinic ZrO2

    Figure  1  XRD patterns of different samples

    图  2  不同硫酸负载量催化剂的吡啶吸附红外光谱谱图

    Figure  2  Py-FTIR spectra of adsorbed pyridine on different samples

    图  3  不同硫酸负载量的催化剂正丁烷异构化反应性能

    Figure  3  Catalytic performances of n-butane isomerization over different samples

    (reation conditions: t=200 ℃, p=1.01×105 Pa, H2:C4=2:3)

    图  4  催化剂表面Brønsted和Lewis酸性位数目与正丁烷转化率的关系

    Figure  4  Relationship between the conversion of n-butane and the number of Brønsted or Lewis acid sites

    图  5  不同温度处理后催化剂的吡啶吸附红外光谱谱图

    Figure  5  Py-FTIR spectra of samples treated at different temperatures

    图  6  ZrO2表面羟基分布及Brønsted和Lewis酸性位相互转化示意图

    Figure  6  Distribution of hydroxyl on the surface of ZrO2 and the mutual transformation between Brønsted and Lewis acidity

    图  7  硫酸化氧化锆表面硫酸物种、Brønsted和Lewis酸性位结构模型

    Figure  7  Structural model of sulfate species, Brønsted and Lewis acid on the surface of SO42-/ZrO2-Al2O3

    表  1  不同硫酸负载量的催化剂结构特性

    Table  1  Textural properties of samples

    表  2  不同硫酸负载量催化剂的表面实际硫含量

    Table  2  Actual sulfur content of different samples

  • [1] 艾莎努拉洪, 莫文龙, 马凤云. Au/HZSM-5沸石催化剂的正丁烷异构化反应性能的研究[J].燃料化学学报, 2015, 43(8):980-989. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18679.shtml

    AISHA Nv-lahong, MO Wen-long, MA Feng-yun. The research of Au/HZSM-5 zeolite catalyst on n-butane isomerization reaction performance[J]. J Fuel Chem Technol, 2015, 43(8):980-989. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18679.shtml
    [2] 张艺菲. 固体超强酸异构化催化剂的失活与再生[D]. 上海: 华东理工大学, 2012.

    ZHANG Yi-fei. The deactivation and regeneration of Pt-SO42-/ZrO2 solid superacids isomerization catalyst[D]. Shanghai:East China University of Science and Technology, 2012.
    [3] 张六一, 韩彩芸, 杜东泉, 张严严, 许思维, 罗永明.硫酸化氧化锆固体超强酸[J].化学进展, 2011, 23(5):860-873. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201105007.htm

    ZHANG Liu-yi, HAN Cai-yun, DU Dong-quan, ZHANG Yan-yan, XU Si-wei, LUO Yong-ming. Sulfated zirconia solid super acid[J]. Prog Chem, 2011, 23(5):860-873. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201105007.htm
    [4] YAMAGUCHI T. Recent progress in solid superacid[J]. Appl Catal, 1990, 61(1):1-25. doi: 10.1016/S0166-9834(00)82131-4
    [5] YAMAGUCHI T, JIN T, TANABE K. Structure of acid sites on sulfur-promoted iron oxide[J]. J Phys Chem, 1986, 90(14):3148-3152. doi: 10.1021/j100405a022
    [6] YAMAGUCHI T, JIN T, ISHIDA T, TANABE K. Structural identification of acid sites of sulfur-promoted solid super acid and construction of its structure on silica support[J]. Mater Chem Phys, 1987, 17(1/2):3-19. http://www.sciencedirect.com/science/article/pii/0254058487900459
    [7] YALURIS G, LARSON R B, KOBE J M, GONZALEZ M R, FOGASH K B, DUMESIC J A. Selective poisoning and deactivation of acid sites on sulfated zirconia catalysts for n-butane isomerization[J]. J Catal, 1996, 158(1):336-342. doi: 10.1006/jcat.1996.0032
    [8] LERCHER J A, GRÜNDLING C, EDER-MIRTH G. Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules[J]. Catal Today, 1996, 27(3):353-376. http://www.sciencedirect.com/science/article/pii/0920586195002480
    [9] NASCIMENTO P, AKRATOPOULOU C, OSZAGYAN M, COUDURIER G, TRAVERS C, JOLY G F. ZrO2-SO42-catalysts. Nature and stability of acid sites responsible for n-butane isomerization[J]. Stud Surf Sci Catal, 1993, 75:1185-1197. doi: 10.1016/S0167-2991(08)64443-2
    [10] MORTERRA C, CERRATO G, EMANUEL C, BOLIS V. On the surface acidity of some sulfate-doped ZrO2 catalysts[J]. J Catal, 1993, 142(2):349-367. doi: 10.1006/jcat.1993.1213
    [11] WAQIF M, BACHELIER J, SAUR O, LAVALLEY J C. Acidic properties and stability of sulfate-promoted metal oxides[J]. J Mol Catal, 1992, 72(1):127-138. doi: 10.1016/0304-5102(92)80036-G
    [12] WANG P Z, ZHANG J Y, WANG G W, LI C Y, YANG C H. Nature of active sites and deactivation mechanism for n-butane isomerization over alumina-promoted sulfated zirconia[J]. J Catal, 2016, 338:124-134. doi: 10.1016/j.jcat.2016.02.027
    [13] GARCIA E, VOLPE M A, FERREIRA M L, RUEDA E. A discussion of a mechanism for isomerization of n-butane on sulfated zirconia[J]. J Mol Catal A:Chem, 2003, 201(1):263-281. http://www.sciencedirect.com/science/article/pii/S1381116903001237
    [14] CIESLA U, SCHACHT S, STUCKY G D, UNGER K K, SCHÜTH F. Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis[J]. Angew Chem Int Ed, 1996, 35(5):541-543. doi: 10.1002/(ISSN)1521-3773
    [15] YANG X, JENTOFT F C, JENTOFT R E, GIRGSDIES F, RESSLER T. Sulfated zirconia with ordered mesopores as an active catalyst for n-butane isomerization[J]. Catal Lett, 2002, 81(1/2):25-31. doi: 10.1023/A:1016095603350
    [16] ALHASSAN F H, RASHID U, AL-QUBAISI M S, RASEDEE A, TAUFIQ-YAP Y H. The effect of sulfate contents on the surface properties of iron-manganese doped sulfated zirconia catalysts[J]. Powder Technol, 2014, 253:809-813. doi: 10.1016/j.powtec.2013.12.045
    [17] MORTERRA C, CERRATO G, PINNA F, SIGNORETTO M. Crystal phase, spectral features, and catalytic activity of sulfate-doped zirconia systems[J]. J Catal, 1995, 157(1):109-123. doi: 10.1006/jcat.1995.1272
    [18] WANG P Z, ZHANG J Y, HAN C H, YANG C H, LI C Y. Effect of modification methods on the surface properties and n-butane isomerization performance of La/Ni-promoted SO42-/ZrO2-Al2 O3[J]. Appl Surf Sci, 2016, 378:489-495. doi: 10.1016/j.apsusc.2016.04.043
    [19] COMELLI R A, CANAVESE S A, VAUDAGNA S R, FIGOLI N S. Pt/SO42-/ZrO2:Characterization and influence of pretreatments on n-hexane isomerization[J]. Appl Catal A:Gen, 1996, 135(2):287-299. doi: 10.1016/0926-860X(95)00233-2
    [20] LIU N W, GUO X F, NAVROTSKY A, LI S, WU D. Thermodynamic complexity of sulfated zirconia catalysts[J]. J Catal, 2016, 342:158-163. doi: 10.1016/j.jcat.2016.08.001
    [21] KATADA N, ENDO J I, NOTSU K I, YASUNOBU N, NAITO N, NIWA M. Superacidity and catalytic activity of sulfated zirconia[J]. J Phys Chem B, 2000, 104(44):10321-10328. doi: 10.1021/jp002212o
    [22] HINO M, KURASHIGE M, MATSUHASHI H, ARATA K. The surface structure of sulfated zirconia:Studies of XPS and thermal analysis[J]. Thermochim Acta, 2006, 441(1):35-41. doi: 10.1016/j.tca.2005.11.042
    [23] ARATA K, HINO M. Solid catalyst treated with anion:ⅩⅤⅢ. Benzoylation of toluene with benzoyl chloride and benzoic anhydride catalysed by solid superacid of sulfate-supported alumina[J]. Appl Catal, 1990, 59(1):197-204. doi: 10.1016/S0166-9834(00)82197-1
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  26
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-17
  • 修回日期:  2017-04-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-06-10

目录

    /

    返回文章
    返回