留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油浆高温快速裂解过程的气固相产物研究

徐斌 高瑞 代正华 刘海峰 王辅臣

徐斌, 高瑞, 代正华, 刘海峰, 王辅臣. 油浆高温快速裂解过程的气固相产物研究[J]. 燃料化学学报(中英文), 2019, 47(10): 1181-1186.
引用本文: 徐斌, 高瑞, 代正华, 刘海峰, 王辅臣. 油浆高温快速裂解过程的气固相产物研究[J]. 燃料化学学报(中英文), 2019, 47(10): 1181-1186.
XU Bin, GAO Rui, DAI Zheng-hua, LIU Hai-feng, WANG Fu-chen. Study on gas and solid phase products of rapid pyrolysis process of oil slurry at high temperature[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1181-1186.
Citation: XU Bin, GAO Rui, DAI Zheng-hua, LIU Hai-feng, WANG Fu-chen. Study on gas and solid phase products of rapid pyrolysis process of oil slurry at high temperature[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1181-1186.

油浆高温快速裂解过程的气固相产物研究

基金项目: 

国家重点研发计划 2018YFB0605000

国家自然科学基金 21776087

上海市优秀技术带头人计划 19XD1434800

详细信息
    通讯作者:

    DAI Zheng-hua, E-mail: chinadai@ecust.edu.cn

  • 中图分类号: TE622

Study on gas and solid phase products of rapid pyrolysis process of oil slurry at high temperature

Funds: 

National Key R & D Program of China 2018YFB0605000

National Natural Science Foundation of China 21776087

Program of Shanghai Technology Research Leader 19XD1434800

  • 摘要: 采用高频炉快速热解装置研究油浆的高温快速热解特性,考察了热解温度、氮气流量对气固相产物的组成和产率的影响。温度是影响气相产物产率的关键因素,气相产物主要为甲烷、氢气和乙烯,升高温度可提高甲烷和氢气的产率,而乙烯产率受高温下二次反应的影响在800 ℃到达最大值后逐渐降低,乙烷、丙烯产率较小且受二次反应的影响在700 ℃到达最大值后逐渐降低,温度高于800 ℃时会有少量乙炔生成且升温可提高乙炔产率。增加氮气流量可降低甲烷、氢气分压,缩短乙烯、丙烯等在高温区的停留时间,从而增加气相产物的产率。积炭产率随热解温度升高迅速增加,氮气流量的增加能够削弱二次反应从而降低积炭产率。
  • 图  1  高频炉快速裂解装置示意图

    Figure  1  Rapid pyrolysis device of high-frequency furnace

    1: feeder; 2: top quartz cover; 3: quartz glass tube; 4: bottom quartz cover; 5: thermocouple; 6: high frequency heating coil; 7: molybdenum crucible; 8: thermocouple

    图  2  石英管中心温度分布

    Figure  2  Temperature distribution curve at the center of quartz glass tube

    图  3  油浆在200和400 mL/min氮气流量下气相产物产率变化

    Figure  3  Gas phase product yields of oil slurry pyrolysis at N2 flow rate of 200 and 400 mL/min

    图  4  油浆在200和400 mL/min氮气流量下积炭产率变化

    Figure  4  Carbon deposition yield of oil slurry pyrolysis at N2 flow rate of 200 and 400 mL/min

    表  1  油浆的组成成分

    Table  1  Composition of oil slurry

    Sample Composition Ratio w/%
    saturates 22.9
    Oil slurry of Shanghai petrochemical aromatics 63.5
    company resins 11.7
    asphaltenes 1.9
    下载: 导出CSV
  • [1] 仲理科, 孙治谦, 任相军, 徐姗姗, 陈阿强, 王振波.催化裂化油浆脱固方法研究进展[J].石油化工, 2017, 46(9):1209-1213. doi: 10.3969/j.issn.1000-8144.2017.09.019

    ZHONG Li-ke, SUN Zhi-qian, REN Xiang-jun, XU Shan-shan, CHEN A-qiang, WANG Zhen-bo. Research progress of catalytic cracking slurry dehardening method[J]. Petrochem Technol, 2017, 46(9):1209-1213. doi: 10.3969/j.issn.1000-8144.2017.09.019
    [2] XUE Y, GE Z, LI F, SU S, LI B. Modified asphalt properties by blending petroleum asphalt and coal tar pitch[J]. Fuel, 2017, 207:64-70. doi: 10.1016/j.fuel.2017.06.064
    [3] 李耀伟.催化裂化油浆改善沥青品质的优化研究[D].山东: 山东科技大学, 2006.

    LI Yao-wei. Optimization of catalytic cracking slurry to improve asphalt quality[D]. Shandong: Shandong University of Science and Technology, 2006.
    [4] SYROEZHKO A M, PROSKURYAKOV V A, BEGAK O Y, FEDOROV V V, KORCHEMKIN S N, SOKOLOVA Y V, KUZNETSOVA O Y. Softeners for rubber and corrosion-resistant coatings based on shale and petroleum raw materials[J]. Russ J Appl Chem, 2001, 74(7):1235-1239. doi: 10.1023/A:1013008126894
    [5] LI P, XIONG J, GE M, SUN J, ZHANG W, SONG Y. Preparation of pitch-based general purpose carbon fibers from catalytic slurry oil[J]. Fuel Process Technol, 2015, 140:231-235. doi: 10.1016/j.fuproc.2015.09.011
    [6] GUNNING, HARRY E. Atomic and free radical reactions[J]. J Am Chem Soc, 1955, 77(8):2347-2348. http://cn.bing.com/academic/profile?id=b5629e74e7283e1d9704fadc25acf9ef&encoded=0&v=paper_preview&mkt=zh-cn
    [7] RANZI E, DENTE M, GOLDANIGA A, BOZZANO G, FARAVELLI T. Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures[J]. Prog Energy Combust Sci, 2001, 27(1):99-139. doi: 10.1016/S0360-1285(00)00013-7
    [8] GHASSABZADEH H, DARIAN J T, ZAHERI R. Experimental study and kinetic modeling of kerosene thermal cracking[J]. J Anal Appl Pyrolysis, 2009, 86(1):221-232. doi: 10.1016/j.jaap.2009.06.006
    [9] 周治.石脑油制低碳烯烃的影响因素研究[J].石油化工, 2018, 47(4):338-343. doi: 10.3969/j.issn.1000-8144.2018.04.006

    ZHOU Zhi. Study on influencing factors of naphtha to produce low carbon olefin[J]. Petrochem Technol, 2018, 47(4):338-343. doi: 10.3969/j.issn.1000-8144.2018.04.006
    [10] CORMA A, ORCHILLES A V. Current views on the mechanism of catalytic cracking[J]. Microporous Mesoporous Mater, 2000, 35:21-30. http://www.sciencedirect.com/science/article/pii/S138718119900205X
    [11] 陈俊武.催化裂化工艺与工程[M]. 2版.北京:中国石化出版社, 2005.

    CHEN Jun-wu. Catalytic Cracking Process and Engineering[M]. 2nd ed, Beijing:China Petrochemical Press, 2005.
    [12] AFSHAREBRAHIMI A, TARIGHI S. The influence of temperature and catalyst additives on catalytic cracking of a heavy fuel oil[J]. Petrol Sci Technol, 2015, 33(4):415-421. doi: 10.1080/10916466.2014.987298
    [13] KHATTAF A, FAHAD S S, ALI, AHMED S. Catalytic cracking of arab super light crude oil to light olefins:An experimental and kinetic study[J]. Energy Fuels, 2018, 32(2):2234-2244. doi: 10.1021/acs.energyfuels.7b04045
    [14] HAGHIGHI S S, RAHIMPOUR M R, RAEISSI S, DEHGHANI O. Investigation of ethylene production in naphtha thermal cracking plant in presence of steam and carbon dioxide[J]. Chem Eng J, 2013, 228:1158-1167. doi: 10.1016/j.cej.2013.05.048
    [15] 廖世健, 张吉人.甲烷部分燃烧制乙炔时产物组成的理论探讨[J].燃料化学学报, 1966, 7(1):1-7. http://www.cnki.com.cn/Article/CJFDTotal-RLHX196601000.htm

    LIAO Shi-jian, ZHANG Ji-ren. Theoretical discussion on the product composition of acetylene produced by partial combustion of methane[J]. J Fuel Chem Technol, 1966, 7(1):1-7. http://www.cnki.com.cn/Article/CJFDTotal-RLHX196601000.htm
    [16] 田立达.天然气制乙炔工艺高级炔烃聚合机理探析[J].天然气化工, 2014, 39(3):16-20. doi: 10.3969/j.issn.1001-9219.2014.03.004

    TIAN Li-da. Analysis on the polymerization mechanism of advanced alkyne in natural gas acetylene process[J]. Nat Gas Chem Ind, 2014, 39(3):16-20. doi: 10.3969/j.issn.1001-9219.2014.03.004
    [17] HONG Y. Advances in technology for preparation of acetylene via partial oxidation of natural gas[J]. China Pet Process Pet Technol, 2010, 12(2):8-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsyjgysyhgjs201002002
    [18] 张浩, 朱凤森, 李晓东, 吴昂键, 薄拯, 岑可法.旋转滑动弧氩等离子体裂解甲烷制氢[J].燃料化学学报, 2016, 44(2):192-200. doi: 10.3969/j.issn.0253-2409.2016.02.009

    ZHANG Hao, ZHU Feng-sen, LI Xiao-dong, WU Ang-jian, BO Zheng, CEN Ke-fa. Rotating sliding-arc argon plasma cracking methane to produce hydrogen[J]. J Fuel Chem Technol, 2016, 44(2):192-200. doi: 10.3969/j.issn.0253-2409.2016.02.009
    [19] YAN B, CHENG Y, LI T, CHENG Y. Detailed kinetic modeling of acetylene decomposition/soot formation during quenching of coal pyrolysis in thermal plasma[J]. Energy, 2017, 121:10-20. doi: 10.1016/j.energy.2016.12.130
    [20] LAHAYE J, BADIE P, DUCRET J. Mechanism of carbon formation during steamcracking of hydrocarbons[J]. Carbon, 1977, 15(2):87-93. doi: 10.1016/0008-6223(77)90022-7
    [21] HARRIS S J, WEINER A M. Soot particle growth in premixed toluene/ethylene flames[J]. Combust Sci Technol, 1984, 38(1/2):75-87. doi: 10.1080/00102208408923764
    [22] 瞿国华.延迟焦化工艺与工程[M].北京:中国石化出版社, 2008.

    QU Guo-hua. Delayed Coking Process and Engineering[M]. Beijing:China Petrochemical Press, 2008.
    [23] 王刚, 吴永涛, 徐春明, 刘维康, 高金森. FCC汽油催化裂解生产低碳烯烃的研究[J].燃料化学学报, 2009, 37(5):552-559. doi: 10.3969/j.issn.0253-2409.2009.05.007

    WANG Gang, WU Yong-tao, XU Chun-ming, LIU Wei-kang, GAO Jin-sen. Study on catalytic pyrolysis of FCC gasoline to produce low carbon alkenes[J]. J Fuel Chem Technol, 2009, 37(5):552-559. doi: 10.3969/j.issn.0253-2409.2009.05.007
    [24] 陈滨.乙烯工学[M].北京:化学工业出版社, 1997.

    CHEN Bin. Ethylene Engineering[M]. Beijing:Chemical Industry Press, 1997.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  36
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-10
  • 修回日期:  2019-07-31
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-10-10

目录

    /

    返回文章
    返回