留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同热裂解温度下ZSM-5对玉米秸秆催化热裂解烃类选择性影响

柴美云 刘荣厚 赫倚风 李冲

柴美云, 刘荣厚, 赫倚风, 李冲. 不同热裂解温度下ZSM-5对玉米秸秆催化热裂解烃类选择性影响[J]. 燃料化学学报(中英文), 2020, 48(5): 577-583.
引用本文: 柴美云, 刘荣厚, 赫倚风, 李冲. 不同热裂解温度下ZSM-5对玉米秸秆催化热裂解烃类选择性影响[J]. 燃料化学学报(中英文), 2020, 48(5): 577-583.
CHAI Mei-yun, LIU Rong-hou, HE Yi-feng, LI Chong. Effect of ZSM-5 on hydrocarbon selectivity of corn stalk catalytic pyrolysis at different pyrolysis temperatures[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 577-583.
Citation: CHAI Mei-yun, LIU Rong-hou, HE Yi-feng, LI Chong. Effect of ZSM-5 on hydrocarbon selectivity of corn stalk catalytic pyrolysis at different pyrolysis temperatures[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 577-583.

不同热裂解温度下ZSM-5对玉米秸秆催化热裂解烃类选择性影响

基金项目: 

国家自然科学基金 51776127

详细信息
    通讯作者:

    刘荣厚Tel: 021 -34205744, E-mail:liurhou@sjtu.edu.cn

  • 中图分类号: S216.2

Effect of ZSM-5 on hydrocarbon selectivity of corn stalk catalytic pyrolysis at different pyrolysis temperatures

Funds: 

the National Natural Science Foundation of China 51776127

  • 摘要: 为探讨不同热裂解温度下ZSM-5对玉米秸秆催化热裂解特性及烃类选择性的影响,本研究利用TGA对比有无ZSM-5时玉米秸秆的热裂解失重曲线,利用Py-GC/MS对比玉米秸秆在450、500、550和600 ℃下的热裂解和催化热裂解产物分布。结果表明,ZSM-5的使用可以降低玉米秸秆最高分解速率时对应的热裂解温度,降低温度为23 ℃。未使用ZSM-5时,热裂解产物种类以及烃类选择性均随热裂解温度的升高不断增加,在600 ℃时,烃类选择性达到最高,为11.33%;使用ZSM-5后,烃类产率随热裂解温度的升高先增加后减少,在550℃时,烃类选择性达到最高,为29.24%。使用ZSM-5后,玉米秸秆催化热裂解主要产物中出现了甲苯、茚、萘、二甲基萘等烃类,甲苯的最高产率为4.76%,萘的最高产率为3.96%。
  • 图  1  玉米秸秆热裂解和催化热裂解的TG曲线(a)和DTG曲线(b)

    Figure  1  TG curves (a) and DTG curves (b) of corn stalk pyrolysis with and without catalyst

    图  2  玉米秸秆在不同热裂解温度下的Py-GC/MS总离子流图

    Figure  2  Py-GC/MS results of corn stalk at different pyrolysis temperatures

    图  3  玉米秸秆在不同热裂解温度下的热裂解有机产物分布

    Figure  3  Organic products selection of corn stalk pyrolysis at different pyrolysis temperatures

    图  4  玉米秸秆在不同温度下的催化热裂解有机产物分布

    Figure  4  Organic products selection of corn stalk catalytic pyrolysis at different pyrolysis temperatures

    表  1  玉米秸秆的理化特性

    Table  1  Physicochemical characteristics of corn stalk

    Item Value
    Proximate analysis (received basis)w/%
    M 6.59±0.005
    A 5.92±0.07
    V 72.83±0.12
    FCa 14.66
    Ultimate analysis (dry ash-free basis)w/%
    C 46.35±0.04
    H 6.96±0.005
    Oa 45.84
    N 0.06±0.0002
    S 0.79±0.003
    Composition analysis (received basis)w/%
    Cellulose 40.34±0.06
    Hemicellulose 25.08±0.38
    Lignin 19.23±0.37
    QHHV, net/(MJ·kg-1) 16.07±0.73
    a: calculated by difference
    下载: 导出CSV

    表  2  基于Coats-Redfern法处理的玉米秸秆热裂解动力学参数

    Table  2  Kinetic parameters with Coats-Redfern method for corn stalk

    Sample Temperaturet/℃ E/(kJ·mol-1) A/s-1 r
    Corn stalk 187-415 105.73 5032.73 0.973
    Mixture of corn stalk and ZSM-5 171-467 91.28 243.69 0.964
    下载: 导出CSV

    表  3  玉米秸秆在不同温度下的15种主要催化热裂解产物及其相对含量

    Table  3  Main compounds and their relative content of corn stalk catalytic pyrolysis at different pyrolysis temperatures

    No. Name Molecular formula Relative content /%
    450℃ 500℃ 550℃ 600℃
    1 carbon dioxide CO2 18.87 14.15 14.87 12.78
    2 methyl glyoxal C3H4O2 7.30 7.34 8.30 7.44
    3 2-propanone, 1-hydroxy- C3H6O2 3.11 3.07 2.68 3.36
    4 toluene C7H8 4.76 1.69 3.33 2.79
    5 furfural C5H4O2 3.92 3.15 3.17 3.31
    6 benzene, 1, 3-dimethyl- C8H10 0.45 3.41 4.36 3.15
    7 benzene, 1-ethyl-2-methyl- C9H12 2.16 0.27 0.46 0.34
    8 valeramide, 5-chloro-N-methyl- C6H12ClNO 4.48 3.13 3.07 2.09
    9 indene C9H8 - - 0.56 0.44
    10 naphthalene C10H8 1.11 2.32 3.96 2.77
    11 benzofuran, 2, 3-dihydro- C8H8O 6.78 6.47 5.48 6.63
    12 naphthalene, 2-methyl- C11H10 2.07 2.90 3.48 2.04
    13 2-methoxy-4-vinylphenol C9H10O2 4.21 4.45 3.99 3.80
    14 naphthalene, 1, 6-dimethyl- C12H12 1.18 1.27 1.26 0.54
    15 stigmasta-3, 5-diene C29H48 0.36 0.41 0.38 0.36
    下载: 导出CSV
  • [1] CHEN D Y, GAO D X, CAPAREDA S C, HUANG S C, WANG Y. Effects of hydrochloric acid washing on the microstructure and pyrolysis bio-oil components of sweet sorghum bagasse[J]. Bioresour Technol, 2019, 277:37-45. doi: 10.1016/j.biortech.2019.01.023
    [2] HU J J, LI C, GUO Q H, DANG J T, ZHANG Q G, LEE D J, YANG Y L. Syngas production by chemical-looping gasification of wheat straw with Fe-based oxygen carrier[J]. Bioresour Technol, 2018, 263:273-279. doi: 10.1016/j.biortech.2018.02.064
    [3] MEI Y F, CHAI M Y, SHEN C J, LIU B B, LIU R H. Effect of methanol addition on properties and aging reaction mechanism of bio-oil during storage[J]. Fuel, 2019, 244:499-507. doi: 10.1016/j.fuel.2019.02.012
    [4] CHEN T J, DENG C J, LIU R H. Effect of selective condensation on the characterization of bio-oil from pine sawdust fast pyrolysis using a fluidized-bed reactor[J]. Energy Fuels, 2010, 24(12):6616-6623. doi: 10.1021/ef1011963
    [5] HUBER G W, IBORRA S, CORMA A. Synthesis of Transportation Fuels from Biomass:Chemistry, Catalysts, and Engineering[M]. United States:Chemical Reviews, 2006.
    [6] WANG S R, DAI G X, YANG H P, LUO Z Y. Lignocellulosic biomass pyrolysis mechanism:A state-of-the-art review[J]. Prog Energy Combust Sci, 2017, 62:33-86. doi: 10.1016/j.pecs.2017.05.004
    [7] JAE J, TOMPSETT G A, FOSTER A J, HAMMOND K D, AUERBACH S M, LOBO R F, HUBER G W. Investigation into the shape selectivity of zeolite catalysts for biomass conversion[J]. J Catal, 2011, 279(2):257-268. doi: 10.1016/j.jcat.2011.01.019
    [8] DU S C, GAMLIEL D P, VALLA J A, BOLLAS G M. The effect of ZSM-5 catalyst support in catalytic pyrolysis of biomass and compounds abundant in pyrolysis bio-oils[J]. J Anal Appl Pyrolysis, 2016, 122:7-12. doi: 10.1016/j.jaap.2016.11.002
    [9] LIU S Y, ZHANG Y N, FAN L L, ZHOU N, TIAN G Y, ZHU X D, CHENG Y L, WANG Y P, LIU Y H, CHEN P, RUAN R. Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis[J]. Fuel, 2017, 196:261-268. doi: 10.1016/j.fuel.2017.01.116
    [10] PARK H J, PARK K H, JEON J K, KIM J, RYOO R, JEONG K E, PARK S H, PARK Y K. Production of phenolics and aromatics by pyrolysis of miscanthus[J]. Fuel, 2012, 97:379-384. doi: 10.1016/j.fuel.2012.01.075
    [11] TAARNING E, OSMUNDSEN C M, YANG X B, VOSS B, ANDERSEN S I, CHRISTENSEN C H. Zeolite-catalyzed biomass conversion to fuels and chemicals[J]. Energy Environ Sci, 2011, 4(3):793-804. doi: 10.1039/C004518G
    [12] GAYUBO A G, AGUAYO A T, ATUTXA A, AGUADO R, OLAZAR M, BILBAO J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. Aldehydes, ketones, and acids[J]. Ind Eng Chem Res, 2004, 43(11):2619-2626. doi: 10.1021/ie030792g
    [13] AHO A, KUMAR N, ERÄNEN K, SALMI T, HUPA M, MURZIN D Y. Catalytic pyrolysis of woody biomass in a fluidized bed reactor:Influence of the zeolite structure[J]. Fuel, 2008, 87(12):2493-2501. doi: 10.1016/j.fuel.2008.02.015
    [14] LU Q, WANG Z, DONG C Q, ZHANG Z F, ZHANG Y, YANG Y P, ZHU X F. Selective fast pyrolysis of biomass impregnated with ZnCl2:Furfural production together with acetic acid and activated carbon as by-products[J]. J Anal Appl Pyrolysis, 2011, 91(1):273-279. doi: 10.1016/j.jaap.2011.03.002
    [15] 李志合, 易维明, 高巧春, 李永军.生物质组分及温度对闪速热解挥发分的影响[J].燃料化学学报, 2005, 33(4):502-505. doi: 10.3969/j.issn.0253-2409.2005.04.025

    LI Zhi-he, YI Wei-ming, Gao Qiao-chun, Li Yong-jun. Effects of chem ical com ponents and tem perature on the volatility of biomass in flash pyrolysis[J]. J Fuel Chem Technol, 2005, 33(4):502-505. doi: 10.3969/j.issn.0253-2409.2005.04.025
    [16] 宋春财, 胡浩权.秸秆及其主要组分的催化热解及动力学研究[J].煤炭转化, 2003, 26(3):91-97. doi: 10.3969/j.issn.1004-4248.2003.03.020

    SONG chun-cai, HU Hao-quan. Catalytic pyrolysis and kinetics of agricultural stalks and their main components[J]. Coal Convers, 2003, 26(3):91-97. doi: 10.3969/j.issn.1004-4248.2003.03.020
    [17] 张智博.生物质快速催化热解制备高附加值化学品的研究[D].北京: 华北电力大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-11412-1016268862.htm

    ZHANG Zhi-bo. Research on catalytic fast pyrolysis of biomass to produce value-added chemicals[D]. Beijing: North China Electric Power University, 2016. http://cdmd.cnki.com.cn/Article/CDMD-11412-1016268862.htm
    [18] CHAI M Y, HE Y F, NISHU, LIU R H. Effect of fractional condensers on characteristics, compounds distribution and phenols selection of bio-oil from pine sawdust fast pyrolysis[J]. J Energy Inst, 2020, 93(2):811-821. doi: 10.1016/j.joei.2019.05.001
    [19] 陈登宇, 朱锡锋.生物质热反应机理与活化能确定方法Ⅱ.热解段研究[J].燃料化学学报, 2011, 39(9):670-674. doi: 10.3969/j.issn.0253-2409.2011.09.006

    CHEN Deng-yu, ZHU Xi-feng. Thermal reaction mechanism of biomass and determination of activation energy II.Pyrolysis section[J]. J Fuel Chem Technol, 2011, 39(9):670-674. doi: 10.3969/j.issn.0253-2409.2011.09.006
    [20] GONG X M, WANG Z, DENG S, LI S G, SONG W L, LIN W G. Impact of the temperature, pressure, and particle size on tar composition from pyrolysis of three ranks of Chinese coals[J]. Energy Fuels, 2014, 28:4942-4948. doi: 10.1021/ef500986h
    [21] CARLSON T R, JAE J, LIN Y C, TOMPSETT G A, HUBER G W. Catalytic fast pyrolysis of glucose with HZSM-5:The combined homogeneous and heterogeneous reactions[J]. J Catal, 2010, 270(1):110-124. doi: 10.1016/j.jcat.2009.12.013
    [22] XU X, JIANG E C. "BTX" from guaiacol HDO under atmospheric pressure:Effect of support and carbon deposition[J]. Energy Fuels, 2017, 31(3):2855-2864. doi: 10.1021/acs.energyfuels.6b02700
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  38
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-24
  • 修回日期:  2020-04-29
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-05-10

目录

    /

    返回文章
    返回