留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉淀剂对CuZnAl催化剂糠醛气相加氢制糠醇选择性的影响

黄玉辉 任国卿 孙蛟 王重庆 陈晓蓉 梅华

黄玉辉, 任国卿, 孙蛟, 王重庆, 陈晓蓉, 梅华. 沉淀剂对CuZnAl催化剂糠醛气相加氢制糠醇选择性的影响[J]. 燃料化学学报(中英文), 2016, 44(6): 726-731.
引用本文: 黄玉辉, 任国卿, 孙蛟, 王重庆, 陈晓蓉, 梅华. 沉淀剂对CuZnAl催化剂糠醛气相加氢制糠醇选择性的影响[J]. 燃料化学学报(中英文), 2016, 44(6): 726-731.
HUANG Yu-hui, REN Guo-qing, SUN Jiao, WANG Chong-qing, CHEN Xiao-rong, MEI Hua. Effect of precipitant on the performance of CuZnAl catalysts in the gas phase selective hydrogenation of furfural to furfuryl alcohol[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 726-731.
Citation: HUANG Yu-hui, REN Guo-qing, SUN Jiao, WANG Chong-qing, CHEN Xiao-rong, MEI Hua. Effect of precipitant on the performance of CuZnAl catalysts in the gas phase selective hydrogenation of furfural to furfuryl alcohol[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 726-731.

沉淀剂对CuZnAl催化剂糠醛气相加氢制糠醇选择性的影响

详细信息
  • 中图分类号: O643.38

Effect of precipitant on the performance of CuZnAl catalysts in the gas phase selective hydrogenation of furfural to furfuryl alcohol

More Information
  • 摘要: 采用共沉淀法制得分别以NaOH、Na2CO3和Na2CO3/NaOH为沉淀剂的CuZnAl-1、CuZnAl-2和CuZnAl-3催化剂, 采用X射线衍射 (XRD)、N2吸附-脱附、H2-程序升温还原 (H2-TPR)、热重和NH3-程序升温脱附 (NH3-TPD) 等方法对催化剂进行了表征, 并在固定床反应器上研究了沉淀剂对CuZnAl催化剂糠醛气相加氢制糠醇选择性的影响。结果表明, 糠醛加氢在三种催化剂上均有较高转化率, 而CuZnAl-3催化剂对糠醇有较高选择性。沉淀剂对CuZnAl催化剂的物相结构、比表面积、酸性和氧化还原性均有较大影响。以Na2CO3/NaOH为沉淀剂得到的CuZnAl-3催化剂具有适宜的比表面积、CuO晶相、较弱的酸性位, 且表面CuO易于还原, 这些因素有利于催化反应生成糠醇。CuZnAl-3催化剂上糠醛气相加氢制糠醇优化工艺参数为:常压、反应温度180℃、氢醛物质的量比为5:1、糠醛体积空速0.3h-1; 糠醛转化率为99.4%, 糠醇选择性为98.3%。
  • 图  1  不同沉淀剂制备催化剂样品前驱体XRD谱图

    Figure  1  XRD patterns of the precursor CuZnAl catalysts obtained with different precipitants

    a: CuZnAl-1; b: CuZnAl-2; c: CuZnAl-3

    图  2  不同沉淀剂制备CuZnAl催化剂的XRD谱图

    Figure  2  XRD patterns of the CuZnAl catalysts

    prepared with different precipitants a: CuZnAl-2; b: CuZnAl-1; c: CuZnAl-3

    图  3  不同沉淀剂制备催化剂前驱体的TG曲线

    Figure  3  TG profiles of the precursor CuZnAl catalysts obtained with different precipitants

    a: CuZnAl-1; b: CuZnAl-2; c: CuZnAl-3

    图  4  不同沉淀剂制备催化剂的NH3-TPD谱图

    Figure  4  NH3-TPD profiles of the CuZnAl catalysts prepared with different precipitants

    a: CuZnAl-1; b: CuZnAl-2; c: CuZnAl-3; d: CuZnAl-3 blank test

    图  5  不同沉淀剂制备催化剂的H2-TPR谱图

    Figure  5  H2-TPR spectra of the CuZnAl catalysts prepared with different precipitants

    a: CuZnAl-2; b: CuZnAl-1; c: CuZnAl-3

    图  6  反应温度对催化性能的影响

    Figure  6  Effect of reaction temperature on the gas phase selective hydrogenation of furfural to furfuryl alcohol over the CuZnAl-3 catalyst

    图  7  体积空速对催化性能的影响

    Figure  7  Effect of furfural volume space velocity on the gas phase selective hydrogenation of furfural to furfuryl alcohol over the CuZnAl-3 catalyst

    图  8  氢醛物质的量比对催化性能的影响

    Figure  8  Effects of mole ratios of hydrogen to furfural on the gas phase selective hydrogenation of furfural to furfuryl alcohol over the CuZnAl-3 catalyst

    图  9  CuZnAl-3上糠醛加氢制糠醇稳定性

    Figure  9  Stability test of the CuZnAl-3 catalyst in the hydrogenation of furfural to furfuryl alcohol

    表  1  不同沉淀剂对所制备的催化剂糠醛加氢性能的影响

    Table  1  Effect of precipitant on the catalytic performance of CuZnAl in the gas phase selective hydrogenation of furfural (FFR) to furfuryl alcohol (FOL)

    CatalystFFR
    conversion x/%
    Selectivity s/%
    2-MFFOLothers
    CuZnAl-199.950.528.321.2
    CuZnAl-299.834.149.616.3
    CuZnAl-399.40.898.30.9
    notes: 2-MF, 2-methyl furan; others include tetrahydrofurfuryl alcohol, cyclopentanone, and cyclopentanol
    下载: 导出CSV

    表  2  不同沉淀剂制备的CuZnAl催化剂的比表面积和孔结构性质

    Table  2  Textural properties of the CuZnAl catalysts prepared with different precipitants

    CatalystBET
    A/(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    Average pore
    diameter d/nm
    CuZnAl-183.330.273.72
    CuZnAl-273.310.313.43
    CuZnAl-341.680.173.29
    note: pore volume was determined on the basis of the nitrogen adsorption at a relative pressure of 0.99
    下载: 导出CSV
  • [1] YAN K, WU G, LAFLEUR T, JARVIS C. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemical[J]. Renew Sust Energ Rev, 2014, 38(5):663-676. https://www.researchgate.net/publication/264161427_Production_properties_and_catalytic_hydrogenation_of_furfural_to_fuel_additives_and_value-added_chemicals
    [2] WEINGARTEN R, TOMPSETT G A, CONNER W C, HUBER G W. Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates:The role of Lewis and Brφnsted acid sites[J]. J Catal, 2011, 279(1):174-182. doi: 10.1016/j.jcat.2011.01.013
    [3] MANDALIK A, LI Q, SATO T K, RUNGE T. Integrated biorefinery model based on production of furans using open-ended high yield processes[J]. Green Chem, 2014, 16(5):2480-2489. doi: 10.1039/C3GC42424C
    [4] BARR J B, WALLON S B. The chemistry of furfuryl alcohol resins[J]. J Appl Polym Sci, 1971, 15(5):1079-1090. doi: 10.1002/app.1971.070150504
    [5] SRIVASTAVA S, SOLANKI N, MOHANTY P, SHAH K A, PARIKH J K, DALAI A K. Optimization and kinetic studies on hydrogenation of furfural to furfuryl alcohol over SBA-15 supported bimetallic copper-cobalt catalyst[J]. Catal Lett, 2015, 145(3):816-823. doi: 10.1007/s10562-015-1488-5
    [6] VILLAVERDE M M, GARETTO T F, MARCHI A J. Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts[J]. Catal Commun, 2015, 58:6-10. doi: 10.1016/j.catcom.2014.08.021
    [7] 张定国, 刘芬, 李发亮, 杨婥.糠醛加氢制糠醇中Cu-Zn/γ-Al2O3催化剂的改性研究[J].化学反应工程与工艺, 2007, 23(2):136-140.

    ZHANG Ding-guo, LIU Fen, LI Fa-liang, YANG Chuo. Study on modification of Cu-Zn/γ-Al2O3 catalysts of hydrogenation of furfural to furfuryl alcohol[J]. Chem React Eng Technol, 2007, 23(2):136-140.
    [8] 郑洪岩, 朱玉雷, 黄龙, 相宏伟, 李永旺. Cu-Mn-Si催化剂在环己醇脱氢和糠醛加氢耦合反应中的研究:沉淀pH值和焙烧温度的影响[J].燃料化学学报, 2008, 36(5):631-636. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17313.shtml

    ZHENG Hong-yan, ZHU Yu-lei, HUANG Long, XIANG Hong-wei, LI Yong-wang. Study on Cu-Mn-Si catalysts for the coupling process of cyclohexanol dehydrogenation and furfural hydrogenation:Effect of pH value and calcination temperature[J]. J Fuel Chem Technol, 2008, 36(5):631-636. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17313.shtml
    [9] LIAW B J, CHIANG S J, CHEN S W, CHEN Y Z. Preparation and catalysis of amorphous CoNiB and polymer-stabilized CoNiB catalysts for hydrogenation of unsaturated aldehydes[J]. Appl Catal A:Gen, 2008, 346(1/2):179-188. http://www.sciencedirect.com/science/article/pii/S0926860X08003360
    [10] YANG J, ZHENG H Y, ZHU Y L, ZHAO G W, ZHANG C H, TENG B T. Effects of calcination temperature on performance of Cu-Zn-Al catalyst for synthesizing γ-butyrolactone and 2-methylfuran through the coupling of dehydrogenation and hydrogenation[J]. Catal Commun, 2004, 5(9):505-510. doi: 10.1016/j.catcom.2004.06.005
    [11] NAKAGAWA Y, TAMURA M, TOMISHIGE K. Catalytic reduction of biomass-derived furanic compounds with hydrogen[J]. Acs Catal, 2013, 3(12):2655-2668. doi: 10.1021/cs400616p
    [12] BEHRENS M, BRENNECKE D, GIRGSDIES F. Understanding the complexity of a catalyst synthesis:Co-precipitation of mixed Cu, Zn, Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments[J]. Appl Catal A:Gen, 2011, 392(1):93-102. http://www.academia.edu/10692421/Understanding_the_complexity_of_a_catalyst_synthesis_Co-precipitation_of_mixed_Cu_Zn_Al_hydroxycarbonate_precursors_for_Cu_ZnO_Al_sub_2_sub_O_sub_3_sub_catalysts_investigated_by_titration_experiments
    [13] DONG F, ZHU Y L, ZHENG H Y, ZHU Y F, LI X, LI Y Q. Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran:The synergistic effect of metal and acid sites[J]. J Mol Catal A, 2015, 398:140-148. doi: 10.1016/j.molcata.2014.12.001
    [14] YING T, YE L, PING Z, XUE Q, LI C, YONG L. High-performance HTLcs-derived CuZnAl catalysts for hydrogen production via methanol steam reforming[J]. AIChE J, 2009, 55(55):1217-1228. https://www.researchgate.net/publication/229741126_High-Performance_HTLcs-Derived_CuZnAl_Catalysts_for_Hydrogen_Production_via_Methanol_Steam_Reforming
    [15] GUO J H, XU G, HAN Z, ZHANG Y, FU Y, GUO Q X. Selective conversion of furfural to cyclopentanone with cuznal catalysts[J]. ACS Sust Chem Eng, 2014, 2(10):2259-2266. doi: 10.1021/sc5003566
    [16] BORTS M S, GILCHENOK N D, GUREVICH G S, IGNATEV V M. Kinetics of vapor-phase hydrogenation of furfural on a copper-chromium catalyst[J]. J Appl Chem (USSR), 1986, 59(1):114-117.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  31
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-26
  • 修回日期:  2016-03-31
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-06-10

目录

    /

    返回文章
    返回