留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高比表面积有序介孔Ni/SiC催化CH4-CO2重整反应

詹海鹃 石晓燕 黄鑫 赵宁

詹海鹃, 石晓燕, 黄鑫, 赵宁. 高比表面积有序介孔Ni/SiC催化CH4-CO2重整反应[J]. 燃料化学学报(中英文), 2019, 47(8): 942-948.
引用本文: 詹海鹃, 石晓燕, 黄鑫, 赵宁. 高比表面积有序介孔Ni/SiC催化CH4-CO2重整反应[J]. 燃料化学学报(中英文), 2019, 47(8): 942-948.
ZHAN Hai-juan, SHI Xiao-yan, HUANG Xin, ZHAO Ning. Highly coke-resistant ordered mesoporous Ni/SiC with large surface areas in CO2 reforming of CH4[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 942-948.
Citation: ZHAN Hai-juan, SHI Xiao-yan, HUANG Xin, ZHAO Ning. Highly coke-resistant ordered mesoporous Ni/SiC with large surface areas in CO2 reforming of CH4[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 942-948.

高比表面积有序介孔Ni/SiC催化CH4-CO2重整反应

基金项目: 

宁夏高等学校科学研究项目 NGY2017008

详细信息
  • 中图分类号: O643

Highly coke-resistant ordered mesoporous Ni/SiC with large surface areas in CO2 reforming of CH4

Funds: 

the Scientific Research Foundation of Higher Education Institutions of Ningxia NGY2017008

More Information
  • 摘要: 采用纳米浇铸法制备了高比表面积(345 m2/g)且孔径均一的有序介孔SiC材料(SiC-OM),以商用SiC(49 m2/g,SiC-C)材料为参比载体。采用等体积浸渍法分别制备了Ni/SiC-OM和Ni/SiC-C,并考察其在CH4-CO2重整反应中的催化性能。利用ICP、BET、XRD、H2-TPR、XPS、HRTEM、TG和Raman等手段对反应前后的两种催化剂进行表征。结果表明,在700℃、1.013×105 Pa和12 L/(h·g)的重整条件下,Ni/SiC-OM的平均积炭速率比Ni/SiC-C降低了一个数量级,这主要归因于强金属-载体相互作用和有序介孔骨架的"限域效应"作用。
  • 图  1  Ni/SiC-C (a)和Ni/SiC-OM (b)催化剂的催化性能

    Figure  1  Catalytic performances of the Ni/SiC-C (a) and Ni/SiC-OM (b) catalysts

    (reaction condition: 700 ℃, 1.013×105 Pa, CH4:CO2=1 and GHSV=12 L/(h·g))

    图  2  Ni-Y/SiC-C (a)和Ni-Y/SiC-OM (b)催化剂的催化性能

    Figure  2  Catalytic performances of the Ni-Y/SiC-C (a) and Ni-Y/SiC-OM (b) catalysts

    (reaction condition: 700 ℃, 1.013×105 Pa, CH4:CO2 = 1 and GHSV = 12 L/(h·g))

    图  3  载体、新鲜催化剂和反应后催化剂的XRD谱图

    Figure  3  XRD patterns of the samples

    (●: β-SiC; ◆: Ni; ▲: NiO; ■: graphite carbon)

    图  4  SiC-OM基材料的N2吸附-脱附曲线(a)和孔径分布(b)

    Figure  4  N2 adsorption-desorption isotherms (a) and pore size distributions (b) of the SiC-OM-derived samples

    图  5  载体的SXRD谱图

    Figure  5  SXRD patterns of the supports

    图  6  催化剂的H2-TPR谱图

    Figure  6  H2-TPR profiles of the Ni/SiC-C and Ni/SiC-OM catalysts

    图  7  新鲜催化剂的Ni 2p3/2 (a)和Si 2p (b) XPS谱图

    Figure  7  Ni 2p3/2 (a) and Si 2p (b) XPS patterns of the fresh catalysts

    图  8  SiC-C (a)、新鲜Ni/SiC-C (b)、反应后Ni/SiC-C (c)、SiC-OM (d)、新鲜Ni/SiC-OM (e)和反应后Ni/SiC-OM (f)的TEM照片

    Figure  8  TEM images of the SiC-C (a), fresh Ni/SiC-C (b), used Ni/SiC-C (c), SiC-OM (d), fresh Ni/SiC-OM (e), and used Ni/SiC-OM (f) catalysts

    图  9  反应后催化剂的TG曲线(a)和Raman谱图(b)

    Figure  9  TG curves (a) and Raman profiles (b) of the used catalysts

    表  1  催化剂的结构性质

    Table  1  Structural properties of the samples

    Sample Ni content w/% BET surface A/(m2·g-1) Pore volume v/(cm3·g-1) Average pore diameter d/nm
    SiC-C - 49 0.15 13.4
    Fresh Ni/SiC-C 9.4 44 0.13 15.0
    Used Ni/SiC-C - 49 0.21 17.4
    SiC-OM - 345 0.31 4.3
    Fresh Ni/SiC-OM 7.9 300 0.27 5.3
    Used Ni/SiC-OM - 231 0.25 5.8
    下载: 导出CSV
  • [1] DEVENDRA P, JAMES S. A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chem Soc Rev, 2014, 43(22):7813-7837. doi: 10.1039/C3CS60395D
    [2] SUN N N, WEN X, WANG F, WEI W, SUN Y H. Effect of pore structure on Ni catalyst for CO2 reforming of CH4[J]. Energy Environ Sci, 2010, 3(3):366-369. doi: 10.1039/b925503f
    [3] HUANG X, XUE G X, WANG C Z, ZHAO N, SUN N N, WEI W, SUN Y H. Highly stable mesoporous NiO-Y2O3-Al2O3 catalysts for CO2 reforming of methane:Effect of Ni embedding and Y2O3 promotion[J]. Catal Sci Technol, 2016, 6(2):449-459. doi: 10.1039/C5CY01171J
    [4] LI S R, GONG J L. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions[J]. Chem Soc Rev, 2014, 43(21):7245-7256. doi: 10.1039/C4CS00223G
    [5] KAWI S, KATHIRASER Y, NI J, OEMAR U, LI Z W, SAW E T. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane[J]. ChemSusChem, 2015, 8(21):3556-3575. doi: 10.1002/cssc.201500390
    [6] ROSTRUP-NIELSEN J R, HANSEN J H B. CO2 reforming of methane over transition metals[J]. J Catal, 1993, 144(1):38-49. https://www.sciencedirect.com/science/article/pii/S0021951783713126
    [7] HUANG X, JI C C, WANG C Z, XIAO F K, ZHAO N, SUN N N, WEI W, SUN Y H. Ordered mesoporous CoO-NiO-Al2O3 bimetallic catalysts with dual confinement effects for CO2 reforming of CH4[J]. Catal Today, 2017, 281:241-249. doi: 10.1016/j.cattod.2016.02.064
    [8] KIM J, SUH D J, PARK T, KIM K. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts[J]. Appl Catal A:Gen, 2000, 197(2):191-200. doi: 10.1016/S0926-860X(99)00487-1
    [9] TIAN H, LI X Y, ZENG L, GONG J L. Recent advances on the design of group Ⅷ base-metal catalysts with encapsulated structures[J]. ACS Catal, 2015, 5(8):4959-4977. doi: 10.1021/acscatal.5b01221
    [10] LI H T, QIU Y, WANG C Z, HUANG X, XIAO T C, ZHAO Y X. Nickel catalysts supported on ordered mesoporous SiC materials for CO2 reforming of methane[J]. Catal Today, 2018, 317:76-85. doi: 10.1016/j.cattod.2018.02.038
    [11] LIU H T, LI S Q, ZHANG S B, WANG J M, WANG J M, ZHOU G J, CHEM G J, CHEM L, WANG X L. Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas[J]. Catal Commun, 2008, 9(1):51-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=313383b0d20bcb75449aa2eba45e0456
    [12] LIU H T, LI S Q, ZHANG S B, CHEN L, ZHOU G J, WANG J M, WANG X L. Catalytic performance of monolithic foam Ni/SiC catalyst in carbon dioxide reforming of methane to synthesis gas[J]. Catal Lett, 2008, 120(1/2):111-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6dd9f019d73b03832ad64a396d1aeb86
    [13] 郭朋飞, 靳国强, 郭聪秀, 王英勇, 童希立, 郭向云. Yb2O3助剂对Ni/SiC催化剂甲烷二氧化碳重整性能的影响[J].燃料化学学报, 2014, 42(6):719-726. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18434.shtml

    GUO Peng-fei, JIN Guo-qiang, GUO Cong-xiu, WANG Ying-yong, TONG Xi-li, GUO Xiang-yun. Effects of Yb2O3 promoter on the performance of Ni/SiC catalysts in CO2 reforming of CH4[J]. J Fuel Chem Technol, 2014, 42(6):719-726. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18434.shtml
    [14] 王冰, 郭聪秀, 王英勇, 靳国强, 郭向云. Ni-Smx/SiC催化剂甲烷二氧化碳重整性能研究[J].燃料化学学报, 2016, 44(5):587-596. doi: 10.3969/j.issn.0253-2409.2016.05.011

    WANG Bing, GUO Cong-xiu, WANG Ying-yong, JIN Guo-qiang, GUO Xiang-yun. Performance of Ni-Smx/SiC catalysts for CO2 reforming of CH4[J]. J Fuel Chem Technol, 2016, 44(5):587-596. doi: 10.3969/j.issn.0253-2409.2016.05.011
    [15] SHI Y F, MENG Y, CHEN D H, CHENG S J, CHEN P, YANG T F, WAN Y, ZHAO D Y. Highly ordered mesoporous silicon carbide ceramics with large surface areas and high stability[J]. Adv Funct Mater, 2006, 16(4):561-567. doi: 10.1002/(ISSN)1616-3028
    [16] JIN G Q, GUO X Y. Synthesis and characterization of mesoporous silicon carbide[J]. Microporous Mesoporous Mater, 2003, 60(1/3):207-212. doi: 10.1016-S1387-1811(03)00378-0/
    [17] WANG C Z, SUN N N, ZHAO N, WEI W, ZHANG J, ZHAO T J, SUN Y H, SUN C G, LIU H, SNAPE C. The properties of individual carbon residuals and their influence on the deactivation of Ni-CaO-ZrO2 catalysts in CH4 dry reforming[J]. ChemCatChem, 2014, 6(2):640-648. doi: 10.1002/cctc.v6.2
    [18] HOFFMANN C, PLATE P, STEINBRUCK A, KASKEL S. Nanoporous silicon carbide as nickel support for the carbon dioxide reforming of methane[J]. Catal Sci Technol, 2015, 5(8):4174-4183. doi: 10.1039/C4CY01234H
    [19] SING K S, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUÉROL J, SIEMIENIEWSKA T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem, 1985, 57(4):603-619. doi: 10.1351/pac198557040603
    [20] XU L L, SONG H L, CHOU L J. One-pot synthesis of ordered mesoporous NiO-CaO-Al2O3 composite oxides for catalyzing CO2 reforming of CH4[J]. ACS Catal, 2012, 2(7):1331-1342. doi: 10.1021/cs3001072
    [21] WANG C Z, SUN N N, ZHAO N, WEI W, SUN Y H, SUN C G, LIU H, SNAPE C. Coking and deactivation of a mesoporous Ni-CaO-ZrO2 catalyst in dry reforming of methane:A study under different feeding compositions[J]. Fuel, 2015, 143:527-535. doi: 10.1016/j.fuel.2014.11.097
    [22] HUANG X, JIAO X, LIN M G, WANG K, JIA L T, HOU B, LI D B. Coke distribution determines the lifespan of a hollow Mo/HZSM-5 capsule catalyst in CH4 dehydroaromatization[J]. Catal Sci Technol, 2018, 8(22):5740-5749. doi: 10.1039/C8CY01391H
    [23] 黄鑫, 焦熙, 林明桂, 贾丽涛, 侯博, 李德宝.甲烷无氧直接制备芳烃研究进展[J].燃料化学学报, 2018, 46(9):1087-1100. doi: 10.3969/j.issn.0253-2409.2018.09.008

    HUANG Xin, JIAO Xi, LIN Ming-gui, JIA Li-tao, HOU Bo, LI De-bo. Research progress in the direct nonoxidative dehydroaromatization of methane to aromatics[J]. J Fuel Chem Technol, 2018, 46(9):1087-1100. doi: 10.3969/j.issn.0253-2409.2018.09.008
    [24] GUO J J, LUO H, ZHENG X M. The deposition of coke from methane on a Ni/MgAl2O4 catalyst[J]. Carbon, 2007, 45(6):1314-1321. doi: 10.1016/j.carbon.2007.01.011
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  38
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-16
  • 修回日期:  2019-06-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-08-10

目录

    /

    返回文章
    返回