留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温等离子体协同Cu-Mn-Ce-Zr/TiO2催化降解甲苯

豆宝娟 赵晨晨 张庆 闫宁娜 杨德宇 郝庆兰

豆宝娟, 赵晨晨, 张庆, 闫宁娜, 杨德宇, 郝庆兰. 低温等离子体协同Cu-Mn-Ce-Zr/TiO2催化降解甲苯[J]. 燃料化学学报(中英文), 2019, 47(5): 598-604.
引用本文: 豆宝娟, 赵晨晨, 张庆, 闫宁娜, 杨德宇, 郝庆兰. 低温等离子体协同Cu-Mn-Ce-Zr/TiO2催化降解甲苯[J]. 燃料化学学报(中英文), 2019, 47(5): 598-604.
DOU Bao-juan, ZHAO Chen-chen, ZHANG Qing, YAN Ning-na, YANG De-yu, HAO Qing-lan. Catalytic degradation of toluene over Cu-Mn-Ce-Zr/TiO2 coupled with low temperature plasma[J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 598-604.
Citation: DOU Bao-juan, ZHAO Chen-chen, ZHANG Qing, YAN Ning-na, YANG De-yu, HAO Qing-lan. Catalytic degradation of toluene over Cu-Mn-Ce-Zr/TiO2 coupled with low temperature plasma[J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 598-604.

低温等离子体协同Cu-Mn-Ce-Zr/TiO2催化降解甲苯

基金项目: 

中国博士后科学基金面上 2017M623284

详细信息
    通讯作者:

    郝庆兰, Tel:15522851031, E-mail:haoqinglan@tust.edu.cn

  • 中图分类号: X511

Catalytic degradation of toluene over Cu-Mn-Ce-Zr/TiO2 coupled with low temperature plasma

Funds: 

The project was supported by the China Postdoctoral Science Foundation 2017M623284

  • 摘要: 以TiO2为载体, 采用等体积浸渍法制备了负载型CuxMn1-xCe0.75Zr0.25/TiO2(x=1.0、0.75、0.5、0.25、0)负载型催化剂, 采用XRD、H2-TPR、O2-TPD和XPS等方法对催化剂进行了表征, 并通过低温等离子体协同催化剂对大流量的甲苯模拟废气进行了催化降解反应研究。结果表明, Cu和Mn单主金属催化剂的活性优于Cu-Mn双主金属催化剂, 其原因是双金属催化剂中Mn的添加减弱了Cu与助剂Ce之间的相互作用, 使得催化剂的晶格氧减少, 低温还原性能降低。在反应初期, 甲苯降解主要依赖于催化剂的活性, 具有较好的低温还原性以及丰富的氧空穴和晶格氧含量的CuCe0.75Zr0.25/TiO2的活性最好; Mn具有较强的O3分解能力, 当等离子体比能密度(SED)增加到一定值后, 等离子体与催化剂的协同作用增强, 从而使得MnCe0.75Zr0.25/TiO2催化剂活性高于CuCe0.75Zr0.25/TiO2, 强化了甲苯的脱除。
  • 图  1  等离子体协同催化降解甲苯评价装置示意图

    Figure  1  Schematic diagram of low temperature plasma coupling with catalyst for toluene degradation

    图  2  CuxMn1-xCZ/T催化剂的XRD谱图

    Figure  2  XRD patterns of the CuxMn1-xCZ/T catalysts

    图  3  CuxMn1-xCZ/T催化剂的H2-TPR谱图

    Figure  3  H2-TPR profiles of the CuxMn1-xCZ/T catalysts

    图  4  CuxMn1-xCZ/T催化剂的O2-TPD谱图

    Figure  4  O2-TPD profiles of the CuxMn1-xCZ/T catalysts

    图  5  CuxMn1-xCZ/T催化剂的XPS谱图

    (a): Cu 2p; (b): Mn 2p; (c): Ce 3d; (d): O 1s

    Figure  5  XPS spectra of the CuxMn1-xCZ/T catalysts

    图  6  催化剂甲苯降解率(a)和CO2选择性(b)与比能密度的关系

    Figure  6  Toluene conversion (a) and selectivity to CO2 (b) for toluene degradation over various catalysts as a function of plasma specific energy density (SED)

    表  1  CuxMn1-xCZ/T催化剂的表面物种

    Table  1  Surface species of the CuxMn1-xCZ/T catalysts

    Catalyst (Cu+Mn)/Ti(%) Ce3+/Ce4+ Olat/Oad
    CuCZ/T 2.00 0.35 5.86
    Cu0.75Mn0.25CZ/T 2.58 0.31 2.06
    Cu0.5Mn0.5CZ/T 2.58 0.31 0.68
    Cu0.25Mn0.75CZ/T 2.52 0.31 0.73
    MnCZ/T 1.60 0.25 4.91
    下载: 导出CSV

    表  2  CuxMn1-xCZ/T催化剂上甲苯转化率为99%时对应的SED值

    Table  2  SED values at a toluene conversion of 99% over the CuxMn1-xCZ/T catalysts

    Catalyst CuCZ/T Cu0.75Mn0.25CZ/T Cu0.5Mn0.5CZ/T Cu0.25Mn0.75CZ/T MnCZ/T
    SED /(J·L-1) 900 610 695 800 423
    下载: 导出CSV
  • [1] 陈颖, 叶代启, 刘秀珍, 吴军良, 黄碧纯, 郑雅楠.我国工业源VOCs排放的源头追踪和行业特征研究[J].中国环境科学, 2012, 32(1):48-55. doi: 10.3969/j.issn.1000-6923.2012.01.008

    CHEN Ying, YE Dai-qi, LIU Xiu-zhen, WU Jun-liang, HUANG Bi-chun, ZHENG Ya-nan. Source tracing and characteristics of industrial VOCs emissions in China[J]. China Environ Sci, 2012, 32(1):48-55. doi: 10.3969/j.issn.1000-6923.2012.01.008
    [2] KARUPPIAH J, SIVACHANDIRAN L, KARVEMBU R, SUBRAHMANYAM C. Catalytic nonthermal plasma reactor for the abatement of low concentrations of isopropanol[J]. Chem Eng J, 2010, 165(1):194-199. doi: 10.1016/j.cej.2010.09.017
    [3] 胡辉, 李胜利, 杨长河, 李劲.放电等离子体处理挥发性有机物的研究进展[J].高电压技术, 2002, 28(3):43-47. doi: 10.3969/j.issn.1003-6520.2002.03.018

    HU Hui, LI Sheng-li, YANG Chang-he, LI Jin. The progress on study of treatment of volatile organic compounds by discharge plasma[J]. High Volt Eng, 2002, 28(3):43-47. doi: 10.3969/j.issn.1003-6520.2002.03.018
    [4] DOU B J, LIU D L, ZHANG Q, ZHAO R Z, HAO Q L, BIN F, CAO J G. Enhanced removal of toluene by dielectric barrier discharge coupling with Cu-Ce-Zr supported ZSM-5/TiO2/Al2O3[J]. Catal Commun, 2017, 92:15-18. doi: 10.1016/j.catcom.2016.12.024
    [5] FAN H Y, SHI C, LI X S, ZHAO D Z, XU Y, ZHU A M. High-efficiency plasma catalytic removal of dilute benzene from air[J]. J Phys D:Appl Phys, 2009, 42(22):225105-225109. doi: 10.1088/0022-3727/42/22/225105
    [6] ZHANG H B, LI K, SUN T H, JIA J P, LOU Z Y, FENG L L. Removal of styrene using dielectric barrier discharge plasmas combined with sol-gel prepared TiO2 coated λ-Al2O3[J]. Chem Eng J, 2014, 241:92-102. doi: 10.1016/j.cej.2013.12.019
    [7] 党小庆, 周宇翔, 黄家玉, 朱海瀛, 秦彩虹.气体循环条件下等离子体催化氧化吸附态苯[J].环境工程学报, 2015, 9(3):1355-1360. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201503061

    DANG Xiao-qing, ZHOU Yu-xiang, HUANG Jia-yu, ZHU Hai-ying, QIN Cai-hong. Plasma-catalytic decomposition of adsorbed benzene withgas circulation[J]. Chin J Environ Eng, 2015, 9(3):1355-1360. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201503061
    [8] 关绣娟, 叶代启, 黄海保.介质阻挡放电-催化降解空气中甲苯的研究[J].环境工程学报, 2008, 2(7):977-982. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb200807024

    GUAN Xiu-juan, YE Dai-qi, HUANG Hai-bao. Study on toluene destruction in air stream by dielectric barrier discharge combined with catalytic system[J]. Chin J Environ Eng, 2008, 2(7):977-982. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb200807024
    [9] HASAN M A, ZAKI M I, PASUPULETY L, KUMARI K. Promotion of the hydrogen peroxide decomposition activity of manganese oxide catalysts[J]. Appl Catal A:Gen, 1999, 181(1):171-179. doi: 10.1016/S0926-860X(98)00430-X
    [10] 张晓玉, 刘志敏, 魏振玲, 杜小春, 龚茂初.高性能甲烷催化燃烧催化剂的制备及其在天然气催化燃烧热水器上的应用[J].催化学报, 2006, 27(9):823-826. doi: 10.3321/j.issn:0253-9837.2006.09.015

    ZHANG Xiao-yu, LIU Zhi-min, WEI Zhen-ling, DU Xiao-chun, GONG Mao-chu. Preparation of high performance methane combustion catalyst and its application to natural gas catalytic combustion Fan-Boiler[J]. J Catal, 2006, 27:823-826. doi: 10.3321/j.issn:0253-9837.2006.09.015
    [11] LI W B, CHU W B, ZHUANG M, HUA J. Catalytic oxidation of toluene on Mn-containing mixed oxides prepared in reverse microemulsions[J]. Catal Today, 2004, 93(3):205-209. doi: 10.1016-j.cattod.2004.06.042/
    [12] 李洪芳, 刘雪松, 郭存霞, 刘统, 罗孟飞, 鲁继青.载体对负载型金催化剂上甲醛催化氧化的影响[J].催化学报, 2009, 30(10):1001-1006. doi: 10.3321/j.issn:0253-9837.2009.10.007

    LI Hong-fang, LIU Xue-song, GUO Cun-xia, LIU Tong, LUO Meng-fei, LU Ji-qing. The influence of the carrier on the catalytic oxidation of formaldehyde on the loaded gold catalyst[J]. J Catal, 2009, 30(10):1001-1006. doi: 10.3321/j.issn:0253-9837.2009.10.007
    [13] OKUMURA K, KOBAYASHI T, TANAKA H, NIWA M. Toluene combustion over palladium supported on various metal oxide supports[J]. Appl Catal B:Environ, 2003, 44(4):325-331. doi: 10.1016/S0926-3373(03)00101-2
    [14] 姚水良, 毛灵爱, 张霞, 唐秀娟.等离子体复合微量贵金属催化反应器催化氧化苯的机理分析[J].高电压技术, 2017, 43(12):3973-3980. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201712022

    YAO Shui-liang, MAO Lin-ai, ZHANG Xia, TANG Xiu-juan. Mechanism analysis of benzene catalytic oxidation using plasma reactor with micro-level noble catalysts[J]. High Volt Eng, 2017, 43(12):3973-3980. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201712022
    [15] SELLICK D R, ARANDA A, GARCÍA T, LÓPEZ J M, SOLAONA B, MASTRAL A M, MORGAN D J, CARLEY A F, TAYLOR S H. Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation[J]. Appl Catal B:Environ, 2013, 132/133(1):98-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8672af8c1216cc4b83f1de9a57e8c2df
    [16] ZHAO C C, HAO Q L, ZHANG Q, YAN N N, LIU J R, DOU B J, BIN F. Catalytic self-sustained combustion of toluene and reaction pathway over CuxMn1-xCe0.75Zr0.25/TiO2 catalysts[J]. Appl Catal A:Gen, 2019, 569:66-74. doi: 10.1016/j.apcata.2018.10.034
    [17] GUO X L, LI J, ZHOU R X. Catalytic performance of manganese doped CuO-CeO2 catalysts for selective oxidation of CO in hydrogen-rich gas[J]. Fuel, 2016, 163:56-64. doi: 10.1016/j.fuel.2015.09.043
    [18] SANTOS V P, PEREIRA M F R, ÓRFÄO J J M, FIGUEIREDO J L. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds[J]. Appl Catal B:Environ, 2010, 99(1/2):353-363. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=57d1e827a80a1170572e3352c67ee07b
    [19] LI L M, JING F L, YAN J L, JING J, CHU W. Highly effective self-propagating synthesis of CeO2-doped MnO2 catalysts for toluene catalytic combustion[J]. Catal Today, 2017, 297:167-172. doi: 10.1016/j.cattod.2017.04.053
    [20] DENG Q F, REN T Z, BAO A, LIU Y P, YUAN Z Y. Mesoporous Cex Zr1-xO2 solid solutions supported CuO nanocatalysts for toluene total oxidation[J]. J Ind Eng Chem, 2014, 20(5):3303-3312. doi: 10.1016/j.jiec.2013.12.012
    [21] TANG W X, WU X F, LIU G, LI S D, LI D Y, LI W H, CHEN Y F. Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs[J]. J Rare Earth, 2015, 33(1):62-69. doi: 10.1016/S1002-0721(14)60384-7
    [22] DOU B J, LV G, WANG C, HAO Q L, HUI K S. Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Chem Eng J, 2015, 270:549-556. doi: 10.1016/j.cej.2015.02.004
    [23] DOU B J, BIN F, WANG C, JIA Q Z, LI J. Discharge characteristics and abatement of volatile organic compounds using plasma reactor packed with ceramic Raschig rings[J]. J Electrost, 2013, 71(5):939-944. doi: 10.1016/j.elstat.2013.08.003
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  23
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-30
  • 修回日期:  2019-02-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-05-10

目录

    /

    返回文章
    返回