留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Methanol oxidation in acidic and alkaline electrolytes using PtRuIn/C electrocatalysts prepared by borohydride reduction process

Santos M. C. L. Nandenha J. Ayoub J. M. S. Assumpção M. H. M. T. Neto A. O.

Santos M. C. L., Nandenha J., Ayoub J. M. S., Assumpção M. H. M. T., Neto A. O.. Methanol oxidation in acidic and alkaline electrolytes using PtRuIn/C electrocatalysts prepared by borohydride reduction process[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1462-1471.
Citation: Santos M. C. L., Nandenha J., Ayoub J. M. S., Assumpção M. H. M. T., Neto A. O.. Methanol oxidation in acidic and alkaline electrolytes using PtRuIn/C electrocatalysts prepared by borohydride reduction process[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1462-1471.

详细信息
  • 中图分类号: O643

Methanol oxidation in acidic and alkaline electrolytes using PtRuIn/C electrocatalysts prepared by borohydride reduction process

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  Typical SEM images of the PtRuIn/C electrocatalysts prepared by borohydride reduction process and their typical EDX spectra

    Figure  2  X-ray diffractograms of the Pt/C, PtIn/C, PtRu/C and PtRuIn/C electrocatalysts prepared by borohydride reduction process

    Figure  3  TEM images and histograms of the particle size distribution to Pt/C, PtRu/C (50:50), PtIn/C (50:50) and PtRuIn/C (50:40:10) electrocatalysts

    Figure  4  TEM images and histograms of the particle size distribution of PtRuIn/C (50:10:40), PtRuIn/C (50:25:25), PtRuIn/C (70:20:10) and PtRuIn/C (90:5:5) electrocatalysts

    Figure  5  Cyclic voltammograms of Pt/C, PtRu/C (50:50), PtIn/C (50:50) and PtRuIn/C electrocatalysts in (a) 0.5 mol/L H2SO4 and (b)1 mol/L KOH solution with a scan rate of 10 mV/s at 25 ℃

    Figure  6  Cyclic voltammograms of Pt/C, PtRu/C (50:50), PtIn/C (50:50) and PtRuIn/C with different atomic ratios electrocatalysts in the presence of (a)0.5 mol/L H2SO4 + 1 mol/L methanol solution or (b)1 mol/L KOH + 1 mol/L methanol with a scan rate of 10 mV/s at 25 ℃

    Figure  7  Chronoamperometry curves in the presence of 0.5 mol/L H2SO4 + 1.0 mol/L methanol at 0.5 V in 30 min (a) or 1 mol/L KOH + 1 mol/L methanol at -0.35 V in 30 min(b)for Pt/C, PtRu/C (50:50), PtIn/C (50:50) and PtRuIn/C electrocatalysts at 25 ℃

    Figure  8  Polarization curves (a) and power density curves (b) in a 5 cm2 DMFC at 80 ℃ using Pt/C, PtRu/C, PtIn/C and PtRuIn/C electrocatalysts as anode catalysts (1 mg (Pt) /cm2) and Pt/C BASF as the cathode catalyst (1 mg (Pt) /cm2), Nafion 117 was used as the membrane. Methanol 2 mol/L with 1.0 mL/min flux and oxygen pressure (0.2 MPa). (c)I-V polarization curves and the (d) power density curves at 80 ℃ of a 5 cm2 DAMFC using Pt/C, PtRu/C, PtIn/C and PRuIn/C electrocatalysts anodes (1 mg (Pt) /cm2 catalyst loading) and Pt/C BASF electrocatalyst cathode (1 mg (Pt) /cm2 catalyst loading with 20% Pt loading on carbon), Nafion 117 membrane treated with KOH, 1.0 mol/L KOH + 1.0 mol/L methanol was used as fuel

    ■:Pt/C; ●:PtRu/C(50:50); ▲:PtIn/C(50:50); ▼:PtRuIn/C(50:10:40); ◀:PtRuIn/C(50:25:25); ▶:PtRuIn/C(50:40:10); ◆:PtRuIn/C(70:20:10); PtRuIn/C(90:5:5)

    Table  1  Pt:Ru, Pt:In and Pt:Ru:In atomic ratios of the prepared electrocatalysts

    Eletrocatalyst EDX results (molar ratio)
    Pt/C
    PtRu/C (50:50) 62:38
    PtIn/C (50:50) 58:42
    PtRuIn/C (50:40:10) 63:31:06
    PtRuIn/C (50:10:40) 71:13:16
    PtRuIn/C (50:25:25) 61:23:16
    PtRuIn/C (70:20:10) 80:16:04
    PtRuIn/C (90:5:5) 93:5:2
    下载: 导出CSV

    Table  2  The average crystallite size and lattice parameter values for Pt/C, PtRu/C, PtIn/C and PtRuIn/C prepared with different atomic ratios

    Material Average crystallite size d/nm Lattice parameter values /nm
    Pt/C 5 0.392
    PtRu/C (50:50) 6 0.388
    PtIn/C (50:50) 3 0.398
    PtRuIn/C (50:10:40) 3 0.396
    PtRuIn/C (50:25:25) 2 0.397
    PtRuIn/C (50:40:10) 3 0.390
    PtRuIn/C (70:20:10) 4 0.392
    PtRuIn/C (90:5:5) 5 0.393
    下载: 导出CSV
  • [1] GERALDES A N, DA SILVA D F, DA SILVA J C M, DE SA O A, SPINACE E V, NETO A O, DOS SANTOS M C. Palladium and palladium-tin supported on multi wall carbon nanotubes or carbon for alkaline direct ethanol fuel cell[J]. J Power Sources, 2015, 275(2):189-199. http://d.old.wanfangdata.com.cn/Periodical/hxxb201804006
    [2] BROUZGOU A, SONG S Q, TSIAKARAS P. Low and non-platinum electrocatalysts for PEMFCs:Current status, challenges and prospects[J]. Appl Catal B:Environ, 2012, 127(1):371-388. http://www.sciencedirect.com/science/article/pii/S092633731200389X
    [3] SHEN S Y, ZHAO T S, XU J B, LI S Y. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells[J]. J Power Sources, 2010, 195(4):1001-1006. doi: 10.1016/j.jpowsour.2009.08.079
    [4] SANTOS M C L, DUTRA R M, RIBEIRO V A, SPINACÉ E V, NETO A O. Preparation of PtRu/C electrocatalysts by borohydride reduction for methanol oxidation in acidic and alkaline medium[J]. Int J Electrochem Sci, 2017, 12(5):3549-3560.
    [5] VEIZAGA N S, PAGANIN V A, ROCHA T A, SCELZA O A, DE MIGUEL S R, GONZALEZ E R. Development of PtGe and PtIn anodic catalysts supported on carbonaceous materials for DMFC[J]. Int J Hydrogen Energy, 2014, 39(16):8728-8737. doi: 10.1016/j.ijhydene.2013.12.041
    [6] IWASITA T. Handbook of Fuel Cells (Vol. 2)[M]. Chichester UK:Wiley, 2003.
    [7] MULLER J, FRANK G, COLBOW K, WILKINSON D. Handbook of Fuel Cells (Vol. 4)[M]. Chichester UK:Wiley, 2003.
    [8] NETO A O, BRANDALISE M, DIAS R R, AYOUB J M S, SILVA A C, PENTEADO J C, LINARDI M, SPINACé E V. The performance of Pt nanoparticles supported on Sb2O5SnO2, on carbon and on physical mixtures of Sb2O5.SnO2 and carbon for ethanol electro-oxidation[J]. Int J Hydrogen Energy, 2010, 35(17):9177-9181. doi: 10.1016/j.ijhydene.2010.06.028
    [9] ARICÒ A S, SRINIVASAN S, ANTONUCCI V. DMFCs:From fundamental aspects to technology development[J]. Fuel Cells, 2001, 1(2):133-161. doi: 10.1002/(ISSN)1615-6854
    [10] SANTOS M L C, OTTONI C A, DE SOUZA R F B, DA SILVA S G, ASSUMPÇÃO M H M T, SPINACé E V, NETO A O. Methanol oxidation in alkaline medium using PtIn/C electrocatalysts[J]. Electrocatal, 2016, 7(6):445-450. doi: 10.1007/s12678-016-0324-z
    [11] FRELINK T, VISSCHER W, VANVEEN J A R. The effect of Sn on Pt/C catalysts for the methanol electro-oxidation[J]. Electrochim Acta, 1994, 39(11/12):1871-1875. http://www.sciencedirect.com/science/article/pii/0013468694851778
    [12] FRELINK T, VISSCHER W, COX A P, VANVEEN J A R. Ellipsometry and dems study of the electrooxidation of methanol at Pt and Ru-and Sn-promoted Pt[J]. Electrochim Acta, 1995, 40(10):1537-1543. doi: 10.1016/0013-4686(95)00034-C
    [13] GURAU B, VISWANATHAN R, LIU R X, LAFRENZ T J, LEY K L, SMOTKIN E S, REDDINGTON E, SAPIENZA A, CHAN B C, MALLOUK T S, SARANGAPANI S. Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation[J]. J Phys Chem B, 1998, 102(49):9997-10003. doi: 10.1021/jp982887f
    [14] XIE J, ZHANG Q, GU L, XU S, WANG P, LIU J, DING Y, YAO Y F, NAN C, ZHAO M, YOU Y, ZOU Z. Ruthenium-platinum core-shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation[J]. Nano Energy, 2016, 21(3):247-257. http://www.sciencedirect.com/science/article/pii/S2211285516000240
    [15] HUANG L, ZHANG X, WANG Q, HAN Y, FANG Y, DONG S. Shape-control of Pt-Ru nanocrystals:Tuning surface structure for enhanced electrocatalytic methanol oxidation[J]. J Am Chem Soc, 2018, 140(3):1142-1147. doi: 10.1021/jacs.7b12353
    [16] DEMIRCI U B. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells[J]. J Power Sources 2007, 173(1):11-18. doi: 10.1016/j.jpowsour.2007.04.069
    [17] ZHU M, SUN G, YAN S, LI H, XIN Q. Preparation, structural characterization, and activity for ethanol oxidation of carbon-supported PtSnIn catalyst[J]. Energy Fuels, 2009, 23(1):403-407. doi: 10.1021/ef800726b
    [18] SANTASALO-AARNIO A, TUOMI S, JALKANEN K, KONTTURI K, KALLIO T. The correlation of electrochemical and fuel cell results for alcohol oxidation in acidic and alkaline media[J]. Electrochim Acta, 2013, 87(1):730-738. http://www.sciencedirect.com/science/article/pii/S0013468612015782
    [19] HOU H, WANG S, JIN Q W, JIANG L, SUN L, JIANG G. KOH modified Nafion112 membrane for high performance alkaline direct ethanol fuel cell[J]. Int J Hydrogen Energy, 2011, 36(8):5104-5109. doi: 10.1016/j.ijhydene.2010.12.093
    [20] FONTES E H, DA SILVA S G, SPINACE E V, NETO A O, DE SOUZA R F B. In situ ATR-FTIR studies of ethanol electro-oxidation in alkaline medium on PtRh/C electrocatalyst prepared by an alcohol reduction process[J]. Electrocatal, 2016, 7(4):297-304. doi: 10.1007/s12678-016-0308-z
    [21] ROYCHOWDHURY C, MATSUMOTO F, ZELDOVICH V B, WARREN S C, MUTOLO P F, BALLESTEROS M J, WIESNER J, ABRUÑA H D, DISALVO F J. Synthesis, characterization, and electrocatalytic activity of PtBi and PtPb nanoparticles prepared by borohydride reduction in methanol[J]. Chem Mater, 2006, 18(14):3365-3372. doi: 10.1021/cm060480e
    [22] DA SILVA S G, SILVA J C M, BUZZO G S, DE SOUZA R F B, SPINACé E V, NETO A O, ASSUMPÇÃO M H M T. Electrochemical and fuel cell evaluation of PtAu/C electrocatalysts for ethanol electro-oxidation in alkaline media[J]. Int J Hydrogen Energy, 2014, 39(19):10121-10127. doi: 10.1016/j.ijhydene.2014.04.169
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  17
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-23
  • 修回日期:  2018-10-11
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-12-10

目录

    /

    返回文章
    返回