留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含氧/蒸汽气氛中煤高温分解产物分布及反应性

吴仕生 曾玺 任明威 汪印 徐绍平 许光文

吴仕生, 曾玺, 任明威, 汪印, 徐绍平, 许光文. 含氧/蒸汽气氛中煤高温分解产物分布及反应性[J]. 燃料化学学报(中英文), 2012, 40(06): 660-665.
引用本文: 吴仕生, 曾玺, 任明威, 汪印, 徐绍平, 许光文. 含氧/蒸汽气氛中煤高温分解产物分布及反应性[J]. 燃料化学学报(中英文), 2012, 40(06): 660-665.
WU Shi-sheng, ZENG Xi, REN Ming-wei, WANG Yin, XU Shao-ping, XU Guang-wen. Product distribution and reactivity of coal pyrolysis at high temperature and in atmospheres containing O2/steam[J]. Journal of Fuel Chemistry and Technology, 2012, 40(06): 660-665.
Citation: WU Shi-sheng, ZENG Xi, REN Ming-wei, WANG Yin, XU Shao-ping, XU Guang-wen. Product distribution and reactivity of coal pyrolysis at high temperature and in atmospheres containing O2/steam[J]. Journal of Fuel Chemistry and Technology, 2012, 40(06): 660-665.

含氧/蒸汽气氛中煤高温分解产物分布及反应性

基金项目: 国家自然科学基金(21006110); 国家科技支撑项目(2009BAC641305, 2010BAC66B01); 国家重点基础研究发展规划(973计划, 2011CB201304); 国家高技术研究发展计划(863计划, 2009AA02Z209)。
详细信息
    通讯作者:

    许光文, 汪印, Tel: 010-82544886, E-mail: gwxu@home.ipe.ac.cn, wangyin@home.ipe.ac.cn。

  • 中图分类号: TQ546.4

Product distribution and reactivity of coal pyrolysis at high temperature and in atmospheres containing O2/steam

  • 摘要: 在流化床反应器中考察了含氧/水蒸气气氛中煤在850 ℃下的热解特性,包括产物分布特性及生成的半焦与焦油的反应性,研究了温度、过量空气比(Equivalence ratio: ER)和水蒸气/煤比(S/C, 质量比)的影响。结果表明,随热解温度、ER和S/C质量比的增加,气体产率增加,而半焦和焦油产率减少。O2的加入使CO2、CO含量明显增加,H2含量降低。O2和水蒸气的加入使半焦的比表面积显著增加,半焦气化活性增强,但半焦在900 ℃和 ER 为0.22的条件下出现轻微石墨化,降低了其气化活性。同时,反应气氛中含有O2和水蒸气对焦油的性质有显著影响,与单纯的N2气氛相比,O2和水蒸气的存在使热解焦油中单环芳烃、酮类、酚类、脂肪烃都明显减少,这对于焦油的进一步裂解及重整更加有利。
  • WANG J G, LI X S, YAO J Z, LI W G, CUI L J. Experimental study of coal topping process in a downer reactor[J]. Ind Eng Chem Res, 2005, 44(3): 463-470.
    XIONG R, DONG L, YU J, ZHANG X F, JIN L, XU G W. Fundamentals of coal topping gasification: Charaterization of pyrolysis topping in a fluidized bed reactor[J]. Fuel Process Technol, 2010, 91(8): 810-817.
    LI C Z, PETER F N. Fate of aromatic ring systems during thermal crackong of tars in a fluidized-bed reactor[J]. Energy Fuels, 1996, 10(5): 1083-1090.
    李美芬, 曾凡桂, 贾建波, 谢克昌. 三种高变质程度煤热解过程中H2的逸出特征研究[J]. 燃料化学学报, 2007, 35(2): 236-240. (LI Mei-fen, ZENG Fan-gui, JIA Jian-bo, XIE Ke-chang. TG/MS study on evolution characteristics of hydrogen from pyrolysis of three high rank coals[J]. Journal of Fuel Chemistry and Technology, 2007, 35(2): 236-240.)
    李术元, 钱家麟. 黄县块状褐煤热解过程的研究[J]. 燃料化学学报, 1992, 20(4): 394-399. (LI Shu-yuan, QIAN Jia-lin. Study on the pyrolysis of Huangxian lignite lump[J]. Journal of Fuel Chemistry and Technology, 1992, 20(4): 394-399.)
    PHUPHUAKRAT T, NIPATTUMMAKUL N, NAMIOKA T, KERDSUWAN S, YOSHIKAWA K. Characterization of tar content in the syngas produced in a downdraft type fixed bed gasification system from dried sewage sludge[J]. Fuel, 2010, 89(9): 2278-2284.
    CHEN Y, DUAN J, LUO Y H. Investigation of agricultural residues pyrolysis behavior under inert and oxidative conditions[J]. J Anal Appl Pyrolysis, 2008, 83(2): 165-174.
    许光文, 刘新华, 高士秋. 制备无焦油产品气的贫氧流化燃烧下吸式气化方法及装置: 中国, 1916123. 2005-08-19. (XU Guang-wen, LIU Xin-hua, Gao Shi-qiu. Method and equipment for producing fuel gas without tar via lean oxygen fluidized combustion coupled with downdraft gasification: CN, 1916123. 2005-08-19.)
    JOCHEN S, TORE M. Reduction of a detailed reaction mechanism for hydrogen combustion under gas turbine conditions[J]. Combust Flame, 2006, 144(3): 545-557.
    ALESSANDRA B, PIO F, ELISEO R. Production of olefins via oxidative dehydrogenation of propane in autothermal conditions[J]. J Catal, 1999, 184(2): 469-478.
    JUDE A O, PAUL T W. Reaction mechanisms for the hydrothermal oxidation of petroleum derived aromatic and aliphatic hydrocarbons[J]. Supercrit Fluids, 2007, 43(1): 81-90.
    CYNTHIA B, TIMOTHY A B, CHRISTOPHER M H. A mechanistic study of reactions of H, O (3P), and OH with monocylic aromatic hydrocarbons by density functional theory[J]. J Phys Chem A, 2001, 105(1): 140-152.
    CHEN Y, LUO Y H, WU W G, SU Y. Experimental investigation on tar formation and destruction in a lab-scale two-stage reacter[J]. Energy Fuels, 2009, 23(8): 4659-4667.
    NAMIKA T, SON Y, SATO M, YOSHIKAWA K. Practical method of gravimetric tar analysis that takes into account a thermal cracking reaction scheme[J]. Energy Fuels, 2009, 23(12): 6156-6162.
    ANDREAS J. Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels[J]. Fuel, 1996, 75(12): 1441-1448.
    REMIAROVA B, MAKRKOS J, ZAJDLIK R, JELEMENSKY L. Identification of the mechanism of coal chat particle combustion by porous structure characterization[J]. Fuel Process Technol, 2004, 85(4): 303-321.
    HOSOKAI S, KUMABE K, OHSHITA M, NORINAGA K, LI C Z, HHYASHI J I. Mechanism of decomposition of aromatics over charcoal and necessary condition for maintaining its activity[J], Fuel, 2008, 87(13): 2914-2922.
    MATSUOKA K, SHINBORI T, KURAMOTO K, NANBA T, MORITA A, HATANO H, SHZUKI Y. Mechanism of woody biomass pyrolysis and gasification in a fluidized bed of porous alumina particles[J]. Energy Fuels, 2006, 20(2): 1315-1320.
    ZHU W K, SONG W L, LIN W G. Effect of the coal particle size on pyrolysis and char reactivity for two types of coal and demineralized coal[J]. Energy Fuels, 2008, 22(6): 2482-2487.
  • 加载中
计量
  • 文章访问数:  1537
  • HTML全文浏览量:  10
  • PDF下载量:  682
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-24
  • 修回日期:  2011-11-19
  • 刊出日期:  2012-06-30

目录

    /

    返回文章
    返回