留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滑动弧放电等离子体分解甲醇制氢

吕一军 闫文娟 胡爽慧 王保伟

吕一军, 闫文娟, 胡爽慧, 王保伟. 滑动弧放电等离子体分解甲醇制氢[J]. 燃料化学学报(中英文), 2012, 40(06): 698-706.
引用本文: 吕一军, 闫文娟, 胡爽慧, 王保伟. 滑动弧放电等离子体分解甲醇制氢[J]. 燃料化学学报(中英文), 2012, 40(06): 698-706.
LV Yi-jun, YAN Wen-Juan, HU Shuang-hui, WANG Bao-wei. Hydrogen production by methanol decomposition using gliding arc gas discharge[J]. Journal of Fuel Chemistry and Technology, 2012, 40(06): 698-706.
Citation: LV Yi-jun, YAN Wen-Juan, HU Shuang-hui, WANG Bao-wei. Hydrogen production by methanol decomposition using gliding arc gas discharge[J]. Journal of Fuel Chemistry and Technology, 2012, 40(06): 698-706.

滑动弧放电等离子体分解甲醇制氢

基金项目: National Natural Science Foundation of China (21176175, 20606023).
详细信息
  • 中图分类号: TQ517.5

Hydrogen production by methanol decomposition using gliding arc gas discharge

  • 摘要: 对常温常压下滑动弧放电等离子体直接分解甲醇进行了研究,探讨了载气流量、甲醇浓度、电极间距、输入电压和气化室温度等实验参数的影响。结果表明,不同操作条件导致甲醇转化率由51%升高到81.7%,氢气和一氧化碳的选择性之比基本保持一个固定值。除了氢气和一氧化碳,产物中还检测到了少量的甲烷和C2不饱和烃以及痕量二氧化碳。不同于传统的甲醇热分解机理,提出了滑动弧放电等离子体甲醇分解的制氢路径。
  • RICO V J, HUESO J L, COTRINO J, GONZA' LEZ-ELIPE A R. Evaluation of different dielectric barrier discharge plasma configurations as an alternative technology for green C1 chemistry in the carbon dioxide reforming of methane and the direct decomposition of methanol[J]. J Phys Chem A, 2010, 114(11): 4009-4016.
    LI Hui-qing, ZOU Ji-jun, ZHANG Yue-ping, LIU Chang-jun. Plasma methanol decomposition using corona discharges[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(12): 1989-1993. (in Chinese)
    LI H-Q, ZOU J-J, ZHANG Y-P, LIU C-J. Novel plasma methanol decomposition to hydrogen using corona discharges[J]. Chem Lett, 2004, 33(6): 744-745.
    TANABE S, MATSUGUMA H, OKITSU K, MATSUMOTO H. Generation of hydrogen from methanol in a dielectric-barrier discharge -plasma system[J]. Chem Lett, 2000, 29(10): 1116-1117.
    XU Y, KAMEOKA S, KISHIDA K, DEMURA M, TSAI A, HIRANO T. Catalytic properties of alkali-leached Ni3Al for hydrogen production from methanol[J]. Intermetallics, 2005, 13(2): 151- 155.
    SA S, SILVA H, BRANDAO L, SOUSA J M, MENDES A. Catalysts for methanol steam reforming—A review[J]. Appl Catal B, 2010, 99(1/2): 43-57.
    CHANG F-W, OU T-C, SELVA ROSELIN L, CHEN W-S, LAI S-C, WU H-M. Production of hydrogen by partial oxidation of methanol over bimetallic Au-Cu/TiO2-Fe2O3 catalysts[J]. J Mol Catal A, 2009, 313(1/2): 55-64.
    YAN Z C, LI C, LIN W H. Hydrogen generation by glow discharge plasma electrolysis of methanol solutions[J]. Int J Hydrogen Energy, 2009, 34(1): 48-55.
    TAKE T, TSURUTANI K, UMEDA M. Hydrogen production by methanol-water solution electrolysis[J]. J Power Sources, 2007, 164(1): 9-16.
    FUTAMURA S, KABASHIMA H. Effects of reactor type and voltage properties in methanol reforming with nonthermal plasma[J]. IEEE TransInd Appl, 2004, 40(6): 1459-1466.
    WANG Y F, YOU Y S, TSAI C H, WANG L C. Production of hydrogen by plasma- reforming of methanol[J]. Int J Hydrogen Energy, 2010, 35(18): 9637-9640.
    KABASHIMA H, EINAGA H, FUTAMURA S. Hydrogen generation from water, methane, and methanol with nonthermal plasma[J]. IEEE Trans Ind Appl, 2003, 39(2): 340-345.
    BURLICA R, SHIH K Y, HNATIUC B, LOCKE B R. Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions[J]. Ind Eng Chem Res, 2011, 50(15): 9466-9470.
    YANG Y C, LEE B J, CHUN Y N. Characteristics of methane reforming using gliding arc reactor[J]. Energy, 2009, 34(2): 172-177.
    BO Z, YAN J , LI X , CHI Y, CEN K. Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion[J]. Int J Hydrogen Energy, 2008, 33(20): 5545-5553.
    CHUN Y N, YANG Y C, YOSHIKAWA K. Hydrogen generation from biogas reforming using a gliding arc plasma-catalyst reformer[J]. Catal Today, 2009, 148(3/4): 283-289.
    SREETHAWONG T, THAKONPATTHANAKUN P, CHAVADEJ S. Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system[J]. Int J Hydrogen Energy, 2007, 32(8): 1067-1079.
    RUEANGJITT N, SREETHAWONG T, CHAVADEJ S, SEKIGUCHI H. Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: Effect of input power, reactor thickness, and catalyst existence[J]. Chem Eng J, 2009, 155(3): 874-880.
    SUN Dian-ping, YANG Xiao-hua, LIU Yu-yan, CHEN Yang-qin. Study on decomposition products of methanol in AC discharge by spectroscopy[J]. Spectroscopy and Spectral Analysis, 2008, 28(9): 1983-1986. (in Chinese)
    SATO T, KAMBE M, NISHIYAMA H. Analysis of a methanol decomposition process by a nonthermal plasma flow[J]. J SME Int J Ser B, 2005, 48(3): 432-439.
    HAN Y, WANG J G, CHENG D G, LIU C J. Density functional theory study of methanol conversion via cold plasma[J]. Ind Eng Chem Res, 2006, 45(10): 3460-3467.
    KRASNOPEROV L N, MICHAEL J V. High-temperature shock tube studies using multipass absorption: Rate constant results for OH +CH3, OH +CH2, and the dissociation of CH3OH[J]. J Phys Chem A, 2004, 108(40): 8317-8323.
    LIDE D R. Handbook of Chemistry and Physics[M], Roca Raton (Florida): 2008-2009, FL33487-2742
  • 加载中
计量
  • 文章访问数:  1305
  • HTML全文浏览量:  17
  • PDF下载量:  598
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-15
  • 修回日期:  2012-01-18
  • 刊出日期:  2012-06-30

目录

    /

    返回文章
    返回