留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Performance enhancement of phosphoric acid fuel cell using phosphosilicate gel based electrolyte

Kajari Kargupta Swati Saha Dipali Banerjee Mrinal Seal Saibal Ganguly

Kajari Kargupta, Swati Saha, Dipali Banerjee, Mrinal Seal, Saibal Ganguly. Performance enhancement of phosphoric acid fuel cell using phosphosilicate gel based electrolyte[J]. 燃料化学学报(中英文), 2012, 40(06): 707-713.
引用本文: Kajari Kargupta, Swati Saha, Dipali Banerjee, Mrinal Seal, Saibal Ganguly. Performance enhancement of phosphoric acid fuel cell using phosphosilicate gel based electrolyte[J]. 燃料化学学报(中英文), 2012, 40(06): 707-713.
Kajari Kargupta, Swati Saha, Dipali Banerjee, Mrinal Seal, Saibal Ganguly. Performance enhancement of phosphoric acid fuel cell using phosphosilicate gel based electrolyte[J]. Journal of Fuel Chemistry and Technology, 2012, 40(06): 707-713.
Citation: Kajari Kargupta, Swati Saha, Dipali Banerjee, Mrinal Seal, Saibal Ganguly. Performance enhancement of phosphoric acid fuel cell using phosphosilicate gel based electrolyte[J]. Journal of Fuel Chemistry and Technology, 2012, 40(06): 707-713.

Performance enhancement of phosphoric acid fuel cell using phosphosilicate gel based electrolyte

详细信息
    通讯作者:

    Kajari Kargupta, E-mail: karguptakajari2010@gmail.com

  • 中图分类号: O646

Performance enhancement of phosphoric acid fuel cell using phosphosilicate gel based electrolyte

  • 摘要: Replacement of phosphoric acid electrolyte by phosphosilicate gel based electrolytes is proposed for performance enhancement of phosphoric acid fuel cell (PAFC). Phosphosilicate gel in paste form and in powder form is synthesized from tetraethoxysilane and orthophosphoric acid using sol-gel method for two different P/Si ratio of 5 and 1.5 respectively. Replacement of phosphoric acid electrolyte by phosphosilicate gel paste enhances the peak power generation of the fuel cell by 133% at 120 ℃ cell temperature; increases the voltage generation in the ohmic regime and extends the maximum possible load current. Polyinyl alcohol (PVA) is used to bind the phosphosilicate gel powder and to form the hybrid crosslinked gel polymer electrolyte membrane. Soaking the membrane with phosphoric acid solution, instead of that with water improves the proton conductivity of the membrane, enhances the voltage and power generation by the fuel cell and extends the maximum possible operating temperature. At lower operating temperature of 70 ℃, peak power produced by phosphosilicate gel polymer electrolyte membrane fuel cell (PGMFC) is increased by 40% compared to that generated by phosphoric acid fuel cell (PAFC). However, the performance of composite membrane diminishes as the cell temperature increases. Thus phosphosilicate gel in paste form is found to be a good alternative of phosphoric acid electrolyte at medium operating temperature range while phosphosilicate gel-PVA composite offers performance enhancement at low operating temperatures.
  • HICKNER M A, GHASSEMI H, KIM Y S, EINISA B R, McGRATH E. Alternative polymer systems for proton exchange membranes (PEMs)[J]. Chem Rev, 2004, 104(10): 4587-4612.
    SHAO P L, MAURITZ K A, MOORE R B. [Perflurosulfonate ionomer] / [mixed inorganic oxide] nanocomposites via polymer - in situ sol- gel Chemistry[J]. Chem Mater, 1995, 7(1): 192-200.
    DENG Q, MOORE R B, MAURITZ K A, J. Nafion/ (SiO2, ORMOSIL, ad dimethylsiloxane) hybrides via In situ sol-gel relations: Characterization of fundamental properties[J]. Appl Polym Sci, 1998, 68(5): 747-763.
    MAURITZ K A, PAYNE J T. [Perfluorosulfonate ionomer]/silicate hybrid membranes via base-catalyzed in situ sol-gel processes for tetraethylorthosilicate[J]. J Membr Sci, 2000, 168(1/2): 39-51.
    TENZULKA T, TADANAGA K, HAYASHI A, TATSUMISAGO M. Proton-conductive inorganic-organic hybrid membrane prepared from 3-(2-aminoethylaminopropyl) triethoxysilane and sulfuric acid by the sol-gel method[J]. J Eloctrochemical Soc, 2009, 156(1): B174-B177.
    DAIKO Y, OGURA K, KATAGIRI K, MUTO H, SAKAI M, MATSUDA A. Surface - sulfonation and fuel cell properties of phenylsilsesquioxane-based particles[J]. Solid State Ionics, 2008, 197(16): 1166-1169.
    APARICIO M, MOSA J, DURAN A. Hybrid organic-inorganic nanostructured membranes for high temperature proton exchange membranes fuel cells (PEMFC)[J]. J Sol-Gel-Science-Technol, 2006, 40(2/3): 309-315.
    VERNON D R, MENG F Q, DEC S F, WILIAMSON D L, TURNER J A, HERRING A M. Synthesis, characterization, and conductivity measurements of hybrid membranes containing a momo - lacuary heteropolyacid for PEM fuel cell applications[J]. J Power Sources, 2005, 139(1/2): 141-151.
    UMEDA J, SUZUKI M, KATO M, MORIYA M, SAKAMATO W, YOGO T. Proton conductive inorganic-organic hybrid membranes functionalized with phosphonic acid for polymer electrolyte fuel cell[J]. J Power Sources, 2010, 195(18): 5882-5888.
    MATSUDA A, KANZAKI T, KOTANI Y, TATSUNISAGO M, MINAMI T. Proton conductivity and structure of phosphosilicate gels derived from tetraethoxysilane and phosphoric acid or triethylphosphate[J]. Solid State Ionics, 2001, 139(1/2): 113-119.
    MATSUDA A, KANZAKI T, KOTANI Y, TATSUMISAGO M, MINAMI T. Proton conductivity of a acid - impregnated mesoporous silica gels prepared using surfactants as a template[J]. Solid State Ionics, 2001, 145(1/4): 135-140.
    MATSUDA A, KANZAKI T, KOTANI Y, TATSUMISAGO M, MINAMI T. Medium temperature operation of fuel cells using thermally stable proton-conducting composite sheets composed of phosphosilicate gel and polyimide[J]. J Power Sources, 2004 138(1/2): 51-55.
    TADANAGA K, MICHIWAKI Y, TEZUKA T, HAYASHI A, TATSUMISAGO M. Structural change and proton conductivity of phosphosilicate gel-polyimide composite membrane for a fuel cell operated at 180℃[J]. J Membr Sci, 2008, 324(1/2): 188-191.
    MATSUDA A, NAKAMOTO N, TADANAGA K, MINAMI T, TATSUMISAGO M. Operation of PEFC using composite sheets composed of phosphosilicate gels and thermally stable organic polymers[J]. Solid State Ionics, 2006, 177(26/32): 2437-2441.
    JIN Y, DINIZ da COSTA J C, LU G Q. Proton conductive composite membrane of phosphosilicate and polyvinyl alcohol[J]. Solid State Ionics, 2007, 178(13/14): 937-942.
    JUNG D H, CHO S Y, PECK D H. Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell[J]. J Power Sources, 2002, 106(1/2): 173-177.
    ADJEIAN K T, LEE S J, BOCARSLY A B. Silicon oxide nafion composite membranes for proton-exchange membrane fuel cell operation at 80-140℃[J]. J Electrochem Soc, 2002, 149(3): A256-A261.
    ADJEIAN K T, SRINIVASAN S, BENZIGER J, BOCARSLY A B. Investigation of PEMFC operation above 100℃ employing perflurosulfonic acis silicon oxide composite membranes[J]. J Power Sources, 2002, 109(2): 356-364.
  • 加载中
计量
  • 文章访问数:  1312
  • HTML全文浏览量:  16
  • PDF下载量:  522
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-05
  • 修回日期:  2012-05-14
  • 刊出日期:  2012-06-30

目录

    /

    返回文章
    返回