留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微生物燃料电池中生物膜成长对电池电化学性能的影响

赵煜 李鹏 王晓斌 孙彦平

赵煜, 李鹏, 王晓斌, 孙彦平. 微生物燃料电池中生物膜成长对电池电化学性能的影响[J]. 燃料化学学报(中英文), 2012, (08): 967-972.
引用本文: 赵煜, 李鹏, 王晓斌, 孙彦平. 微生物燃料电池中生物膜成长对电池电化学性能的影响[J]. 燃料化学学报(中英文), 2012, (08): 967-972.
ZHAO Yu, LI Peng, WANG Xiao-bin, SUN Yan-ping. Influence of initial biofilm growth on electrochemical behavior in dual-chambered mediator microbial fuel cell[J]. Journal of Fuel Chemistry and Technology, 2012, (08): 967-972.
Citation: ZHAO Yu, LI Peng, WANG Xiao-bin, SUN Yan-ping. Influence of initial biofilm growth on electrochemical behavior in dual-chambered mediator microbial fuel cell[J]. Journal of Fuel Chemistry and Technology, 2012, (08): 967-972.

微生物燃料电池中生物膜成长对电池电化学性能的影响

基金项目: National Natural Science Foundation of China (20776091, 21176168).
详细信息
  • 中图分类号: TM911.45

Influence of initial biofilm growth on electrochemical behavior in dual-chambered mediator microbial fuel cell

  • 摘要: 以大肠杆菌为接种体,葡萄糖为基质,在1 000 Ω恒外阻下生成电活性生物膜,研究了生物膜的形成对电池电化学行为的影响。应用循环伏安、阻抗测试、极化分析、输出功率和阳极电势来考察其电化学表现。研究结果表明,随着生物膜完全成熟,阳极极化电阻减小66.5%,阳极电势逐渐降低,最大输出功率密度增加260%。
  • RAO J R,RICHTER G J,VONSTURM F,WEIDLICH E.Performance of glucose electrodes and characteristics of different biofuel cell constructions[J].Bioelectrochem Bioenerg, 1976, 3(1): 139-150.
    ALLEN R M,BENNETTO H P. Microbial fuel-cells--electricity production from carbonhydrates[J].Appl Biochem Biotechnol, 1993,39-40:27-40.
    LOVLEY D R.Bug juice: Harvesting electricity with microorganisms[J].Nat Rev Microbiol, 2006,4(7): 497-508.
    LOGAN B E. Extracting hydrogen and electricity from renewable resources[J]. Environ Sci Technol, 2004, 38(1): 160-167.
    MIN B, KIM J, OH S, REGAN J M, LOGAN B E. Electricity generation from swine wastewater using microbial fuel cells[J]. Water Res, 2005, 39(20): 4961-4968.
    ZHANG L, ZHOU S, ZHUANG L, LI W, ZHANG J, LU N, DENG L. Microbial fuel cell based on Klebsiella pneumoniae biofilm[J]. Electrochem Commun, 2008, 10(10): 1641-1643.
    AELTERMAN P, RABAEY K, PHAM H T, BOON N, VERSTRAETE W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J]. Environ Sci Technol, 2006, 40(10): 3388-3394.
    LIU Y, HARNISCH F, FRICKE K, SIETMANN R, SCHRÖDER U. Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure[J]. Biosens Bioelectron, 2008, 24(4): 1012-1017.
    RABAEY K, BOON N, SICILIANO S D, VERHAEGE M, VERSTRAETE W. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Appl Environ Microbiol, 2004, 70(9): 5373-5382.
    LOGAN B E, HAMELERS B, ROZENDAL R, SCHRORDER U, KELLER J, FREGUIA S, AELTERMANP, VERSTRAETE W, RABAEY K. Microbial fuel cells:Methodology and technology[J]. Environ Sci Technol, 2006, 40(17): 5181-5192.
    HE Z, WAGNER N, MINTEER S, ANGENENT L. An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy[J]. Environ Sci Technol, 2006, 40(17): 5212-5217.
    KATZ E, WILLNER I. Probing bimolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA sensor, and enzyme biosensors[J]. Electroanalysis, 2003, 15(11): 913-947.
    WAGNER N. Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy[J]. J Appl Electrochem, 2002,32(8): 859-863.
    ORAZEM M E, SHUKLA P, MEMBRINO M A. Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements[J]. Electrochim Acta, 2002,47(13): 2027-2034.
    RAMASAMY R P, MENCH M M, REGAN J M. Impact of initial biofilm growth on the anode impedance of microbial fuel cells[J]. Biotechnol Bioeng, 2008, 101(1): 101-108.
    LIU H, CHENG S A, L OGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environ Sci Technol, 2005, 39(14): 5488-5493.
    AELTERMAN P, FREGUIA S, KELLER J, VERSTRAETE W, RABAEY K. The anode potential regulates bacterial activity in microbial fuel cells[J]. Appl Microbiol Biotechnol, 2008, 78(3): 409-418.
    FINKELSTEIN D A, TENDER L M, ZEIKUS J G. Effect of electrode potential on electrode-reducing microbiota[J]. Environ Sci Technol, 2006, 40(22): 6990-6995.
    SCHRÖDER U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency[J]. Phys Chem Chem Phys, 2007, 9: 2619-2629.
    CHENG S, LOGAN B E. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells[J]. Bioresour Technol, 2011, 102(6): 4468-4473.
  • 加载中
计量
  • 文章访问数:  2163
  • HTML全文浏览量:  10
  • PDF下载量:  709
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-04
  • 修回日期:  2012-04-16
  • 刊出日期:  2012-08-31

目录

    /

    返回文章
    返回